版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题36含45°角的问题的几种解题思路(解析版)
模块一典例剖析+针对训练
思路1:套用半角模型常用结论.
模型解读:
常用结论:如图①,BM+DN=MN;MA平分∠BMN,NA平分∠DNM;△CMN的周长=2AB.
常用证明方法:如图②,将△ADN绕点A顺时针旋转90°,得到△ABN′,证明△AMN≌△AMN′.
常用结论:如图③,BP2+QD2=PQ2.
常用证明方如图④,在正方形ABCD中,AD=a,点M,N分别在BC,CD边上,且∠MAN=45°.
拓展结论:
(1)BM+DN=MN;
(2)MA平分∠BMN,NA平分∠DNM;
(3)△CMN的周长=2a(为定值);
(4)S△ABM+S△ADN=S△AMN;
MN
(5)的最小值为22-2;
AB
2
(6)S△AMN的最小值为(2-1)a;
2
(7)S△CMN的最大值为(3-22)a;
(8)BP2+QD2=PQ2;
(9)△APQ∽△BAQ∽△DPA∽△BPM∽△DNQ;
(10)BQ·DP=AB·AD=a2(定值);
(11)△APQ∽△ANM(相似比为1∶2);
(12)S△AMN=2S△APQ;
(13)P,M,N,Q四点共圆;
(14)△AMC∽△AQD(相似比为1∶2);
(15)CM·CN=2BM·DN;
第1页共26页更多资料加微信:.
(16)MQ⊥AN,NP⊥AM;
(17)△APN与△AQM均为等腰直角三角形;
(18)A,B,M,Q四点共圆;
(19)A,P,N,D四点共圆.
法:将△ABP绕点A逆时针旋转90°,得到△ADP′,证明△AQP≌△AQP′.
思路2:作垂直,将45°角置于直角三角形中,构造等腰直角三角形解决问题.
思路3:利用同弧所对的圆周角等于圆心角的一半,构造直角三角形,解决问题.
思路4:利用两角和或差的正切公式
;
典例1在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°
时,求点C的坐标.
思路引领:由于本题没有交代点C在y轴正半轴上还是负半轴上,因此这道题点C的位置需要分两种
情况讨论,这两个位置正好关于x轴对称,因此我们只需求解点C在y轴正半轴上的情况,然后由对称性
求出点C在y轴负半轴上的情况.
方法1:如图①,以45°角为基础,构造等腰直角三角形,由△BCF与△BDE全等,设法求出OC的
长.
方法2:如图②,同方法1构造等腰直角三角形BCD,过点D作DH⊥x轴于点H,其实这一方法与前
一方法类似,因为△BOC与图①中的△CFB全等,△BDH与图②中的△DBE全等,求OC长的时候,可利
用△AOC与△ADH相似来解决.
方法3:如图③,构造等腰直角三角形,还可以过点B作BK⊥AC于点K来解决.
方法4:过点A作BC的垂线,解题方法同方法3.
方法5:如图④,利用同弧所对的圆心角是圆周角的2倍,将45°角转化为90°角来解决问题.
方法6:利用两角和的正切公式容易轻松求解。
例1图
选择方法5和方法6解
方法5解:设线段AB的中点为E,
∵点A(4,0)、B(﹣6,0),
∴AB=10,E(﹣1,0),
(1)如答图1所示,过点E在第二象限作EP⊥AB,且EPAB=5,则△PBA为等腰直角三角形,∠
1
=2
第2页共26页更多资料加微信:.
BPA=90°,PA=PB=5;
以点P为圆心,PA(或PB2)长为半径作P,与y轴的正半轴交于点C,
∵∠BCA为P的圆周角,⊙
⊙
∴∠BCA∠BPA=45°,即则点C即为所求.
1
过点P作=P2F⊥y轴于点F,则OF=PE=5,PF=1,
在Rt△PFC中,PF=1,PC=5,由勾股定理得:CF7,
22
∴OC=OF+CF=5+7=12,2=��−��=
∴点C坐标为(0,12);
(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,
﹣12).
综上所述,点C坐标为(0,12)或(0,﹣12).
总结提升:本题考查了圆周角定理,难度较大,由45°的圆周角联想到90°的圆心角是解题的突破口,
也是本题的难点所在.
方法6:当C在y轴正半轴上时,设C(0,y)
∵tan∠BCA=tan45=1
∴tan(∠BCO+∠ACO)=1
4+6
yy
=1
46
1-×
yy
第3页共26页更多资料加微信:.
解得y=12(负值舍去)C(0,12)
当C在y轴负半轴上时,C(0,-12)
综上所述,点C坐标为(0,12)或(0,﹣12).
针对训练
1.(2021春•永嘉县校级期末)如图,已知反比例函数y(x>0)的图象经过点A(4,5),若在该图象
�
=
上有一点P,使得∠AOP=45°,则点P的坐标是(6,).
25
5
3
思路引领:作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△
AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′(4,﹣3),求出线段AA′的中垂线的解析
式,利用方程组确定交点坐标即可.
解:如图,作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,
则△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,﹣4).
∵反比例函数y(x>0)的图象经过点A(4,5),
�
所以由勾股定理=可知:OA,
22
∴k=4×5=20,=4+5=41
∴y,
20
=�
∴AA′的中点K(,),
91
∴直线OK的解析式2为2yx,
1
=9
由,解得或,
1
�=9��=65�=−65
2525
20�=�=−
∵点�P=在�第一象限,33
∴P(6,),
25
5
3
第4页共26页更多资料加微信:.
故答案为(6,).
25
5
3
总结提升:本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造
全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.
2.如图,已知△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=2,CD=1.求△ABC的面积.
思路引领:如图,过B作BE⊥AC,垂足为E交AD于F,由∠BAC=45°可以得到BE=AE,再根据已
知条件可以证明△AFE≌△BCE,可以得到AF=BC=3,而∠FBD=∠DAC,又∠BDF=∠ADC=90°,
由此可以证明△BDF∽△ADC,所以FD:DC=BD:AD,设FD长为x,则可建立关于x的方程,解方
程即可求出FD,AD的长,根据三角形的面积公式即可得到结论.
解:如图,过B作BE⊥AC,垂足为E交AD于F,
∵∠BAC=45°,
∴BE=AE,
∵∠C+∠EBC=90°,∠C+∠EAF=90°,
∴∠EAF=∠EBC,
在△AFE与△BCE中,,
∠𝐸�=∠𝐸�
��=��
∴△AFE≌△BCE(ASA)∠,�𝐸=∠�𝐸=90°
∴AF=BC=BD+DC=3,∠FBD=∠DAC,
又∵∠BDF=∠ADC=90°,
∴△BDF∽△ADC,
第5页共26页更多资料加微信:.
∴FD:DC=BD:AD,
设FD长为x,则
x:1=2:(x+3),
解得x(负值舍去),即FD,
−3+17−3+17
==
∴AD=AF+F2D=3,2
−3+17
+
∴△ABC的面积BC•2AD3×(3).
11−3+179+317
=2=2×+2=4
总结提升:本题考查了勾股定理,全等三角形的判定和性质,根据题意作出辅助线,构造出直角三角形
是解答此题的关键.
典例2(2022•东莞市校级一模)如图1,正方形ABCD中,E、F分别是边CD、AD上的点,∠EBF=45°.
(1)小聪同学通过将△BAF绕点B顺时针旋转90°至△BCG,得到∠EBG=∠EBF=45°.
①请直接写出线段CE、EF、AF之间的数量关系:EF=EC+AF(用等式表示);
②若AB=2,E为CD边中点,求AF.
(2)如图2,将正方形ABCD改为矩形,且AB=2,BC=3,其他条件不变,即:E、F分别是边CD、
AD上的点,∠EBF=45°.
③记EF=y,CE+AF=x,试探究y与x之间的数量关系(用等式表示);
④当BF⊥EF时,求线段EF的长.
第6页共26页更多资料加微信:.
思路引领:(1)①由旋转可知△BAF≌△BCG,所以BF=BG,AF=CG,BF=BG,易证△BFE≌△BGE
(SAS),所以EF=EC+CG=EC+AF;
②若点E为CD的中点,则DE=EC=1,设AF=x,则CG=x,DF=2﹣x,由①可知,EF=1+x,在
Rt△DEF中,∠D=90°,利用勾股定理建立关于x的方程,求解即可;
(2)③将△ABF绕点B顺时针旋转90°至△PBM,延长BM交DC的延长线于点N,过点M作MH⊥
DN于点N,连接EM,由旋转可得,∠BPM=90°,BF=BM,BP=AB=2,∠ABF=∠PBM,易证四
边形PMNC是矩形,所以PM=CH=AF,所以CE+CH=x,由(1)中思路易证△BEF≌△BEM(SAS),
所以EM=BF=y,在Rt△MHE中,由勾股定理可得,MH2+EH2=EM2,代入数据可得结论;
④因为BF⊥EF,所以△BFE是等腰直角三角形,则FB=FE,∠AFB+∠DFE=90°,易证△ABF≌△
DFE(AAS),所以DF=2,AF=DE=1,由勾股定理可得EF.
解:(1)①由题意可知△BAF≌△BCG,=5
∴BF=BG,AF=CG,BF=BG,
∵∠EBG=∠EBF=45°,BE=BE,
∴△BFE≌△BGE(SAS),
∴EF=EG,
∵EG=EC+CG=EC+AF,
∴EF=EC+AF,
故答案为:EF=EC+AF.
②若点E为CD的中点,
∴DE=EC=1,
设AF=x,则CG=x,DF=2﹣x,
由①可知,EF=1+x,
在Rt△DEF中,∠D=90°,由勾股定理可得,(2﹣x)2+12=(1+x)2,
解得x,即AF.
22
(2)③=3将△ABF=绕3点B顺时针旋转90°至△PBM,延长BM交DC的延长线于点N,过点M作MH⊥
DN于点N,连接EM,
第7页共26页更多资料加微信:.
由旋转可得,∠BPM=90°,BF=BM,BP=AB=2,∠ABF=∠PBM,
∴∠CPM=90°,PC=MH=1,
∵∠BCN=90°,
∴四边形PMNC是矩形,
∴PM=CH=AF,
∴CE+CH=x,
∵∠FBE=45°,
∴∠ABF+∠EBC=45°,即∠PBM+∠EBC=∠EBM=45°,
∵BF=BF,∠FBE+∠EBM=45°,BE=BE,
∴△BEF≌△BEM(SAS),
∴EM=BF=y,
在Rt△MHE中,由勾股定理可得,MH2+EH2=EM2,
∴12+x2=y2,即y.
2
④∵BF⊥EF,=�+1
∴△BFE是等腰直角三角形,
∴FB=FE,∠AFB+∠DFE=90°,
∵∠AFB+∠ABF=90°,
∴∠ABF=∠DFE,
∵∠A=∠D=90°,
∴△ABF≌△DFE(AAS),
∴DF=2,AF=DE=1,
∴EF.
总结提=升5:本题属于四边形综合题,主要考查全等三角形的性质与判定,矩形的性质,勾股定理,旋转
第8页共26页更多资料加微信:.
的性质等知识,解题的关键是利用类比思想作出正确的辅助线,将所求线段放在同一个三角形中.
针对训练
1.(2020•泗水县二模)如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、
AF分别交BD于M、N,连接EN、EF,有以下结论:
①△ABM∽△NEM;②△AEN是等腰直角三角形;③当AE=AF时,;④BE+DF=EF.其
��2
=
中正确的个数有()��2
A.1个B.2个C.3个D.4个
思路引领:①如图1,证明△AMN∽△BME和△AMB∽△NME,
②利用相似三角形的性质可得∠NAE=∠AEN=45°,则△AEN是等腰直角三角形可作判断;
③先证明CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,表示AC的长为AO+OC可作判断;
④如图3,将△ADF绕点A顺时针旋转90°得到△ABH,证明△AEF≌△AEH(SAS),则EF=EH=BE+BH
=BE+DF,可作判断.
解:如图1,
∵四边形ABCD是正方形,
∴∠EBM=∠ADM=∠FDN=∠ABD=45°,
∵∠MAN=∠EBM=45°,∠AMN=∠BME,
∴△AMN∽△BME,
∴,
����
=
��𝐴
第9页共26页更多资料加微信:.
∴,
����
=
∵∠��AMB�=�∠EMN,
∴△AMB∽△NME,故①正确,
∴∠AEN=∠ABD=45°
∴∠NAE=∠AEN=45°,
∴△AEN是等腰直角三角形,故②正确,
在△ABE和△ADF中,
∵,
��=��
∠���=∠���=90°
∴△�A�B=E≌��△ADF(SAS),
∴BE=DF,
∵BC=CD,
∴CE=CF,
假设正方形边长为1,设CE=x,则BE=1﹣x,
如图2,连接AC,交EF于H,
∵AE=AF,CE=CF,
∴AC是EF的垂直平分线,
∴AC⊥EF,OE=OF,
Rt△CEF中,OCEFx,
12
△EAF中,∠EAO==2∠F=AO2=22.5°=∠BAE=22.5°,
∴OE=BE,
∵AE=AE,
∴Rt△ABE≌Rt△AOE(HL),
第10页共26页更多资料加微信:.
∴AO=AB=1,
∴ACAO+OC,
=2=
∴1x,
2
x=2+2=,2
−2
∴,故③正确,
��1−(2−2)2
==
③�如�图3,2−22
∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,
∵∠EAF=45°=∠DAF+∠BAE=∠HAE,
∵∠ABE=∠ABH=90°,
∴H、B、E三点共线,
在△AEF和△AEH中,
,
��=��
∠𝐸�=∠𝐸�
∴�△�=AE�F�≌△AEH(SAS),
∴EF=EH=BE+BH=BE+DF,故④正确.
故选:D.
总结提升:本题属于四边形综合题,综合考查正方形的性质、全等三角形的判定和性质,等腰直角三角
形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学
会添加常用辅助线构造全等三角形,属于中考压轴题.
2.如图,正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,且EG与FH的夹角为45°,
若正方形ABCD的边长为1,FH的长为,求EG的长.
5
2
第11页共26页更多资料加微信:.
思路引领:可过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,将△AND绕点A旋
转到△APB,不难得出△APM和△ANM全等,那么可得出PM=MN,而MB的长可在Rt△ABM中根据
AB和AM(即HF的长)求出.如果设DN=x,那么NM=PM=BM+x,MC=BC﹣BM=1﹣BM,因此
可在直角三角形MNC中用勾股定理求出DN的长,进而可在Rt△AND中求出AN即EG的长.
解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,
∵AB=1,AM=FH,
5
=
在Rt△ABM中,BM2,将△AND绕点A旋转到△APB,
221
∴AP=AN.=��−��=2
∵EG与FH的夹角为45°,
∴∠MAN=45°,
∴∠DAN+∠MAB=45,即∠PAM=∠MAN=45°,
在△APM和△ANM中,有,
��=��
∠𝐸�=∠���
∴△APM≌△ANM(SAS),��=��
∴PM=NM,
设DN=x,则NC=1﹣x,NM=PMx,
1
=2+
在Rt△CMN中,(x)2(1﹣x)2,
11
+=+
解得x,24
1
=3
∴EG=AN,
210
=1+�=3
答:EG的长为.
10
3
第12页共26页更多资料加微信:.
总结提升:本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、图形
的旋转变换等知识.通过辅助线或图形的旋转将所求的线段与已知的线段构建到一对全等或相似的三角
形中是本题的基本思路.
典例3(2019秋•宁化县月考)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,
延长CD到点G,使DG=BE,连结EF,AG.
①判定AE和AG关系,并证明;
②证明:EF=FG;
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,
若BM=1,CN=3,求MN的长.
思路引领:(1)证△ADG≌△ABE,△FAE≌△FAG,根据全等三角形的性质求出即可;
(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE
(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠
MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;
最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.
(1)①AE=AG,AE⊥AG
证明:在正方形ABCD中,
∠B=∠ADG,AD=AB,
∵DG=BE
∴△ABE≌△ADG(SAS),
第13页共26页更多资料加微信:.
∴∠BAE=∠DAG,AE=AG,
∴∠EAG=90°,
∴AE=AG,AE⊥AG
②在△FAE和△GAF中,
AE=AG
∠EAF=∠FAG=45〬
AF=AF,
∴△FAE≌△GAF(SAS),
∴EF=FG;
(2)如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°.
∵CE⊥BC,
∴∠ACE=∠B=45°.
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,
∴∠BAM+∠CAN=45°.
∵∠BAM=∠CAE
∴∠MAN=∠EAN=45°.
∵AN=AN
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,,
2222
��=��+��=3+1=10
第14页共26页更多资料加微信:.
∴MN=EN.
总结提升:=本题10主要考查正方形的性质,全等三角形的判定和性质、等腰直角三角形的性质以及勾股定
理的综合应用,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
针对训练
1.(2020春•太仓市期中)如图,在等腰直角三角形ABC中,∠BAC=90°,D,E是斜边BC上两点,∠
DAE=45°,BD=3,CE=4,则△ABC的面积为36.
思路引领:将△AEC顺时针方向旋转90°至△AFB,得出∠ABF=∠ACD=45°,∠BAF=∠CAE,AE
=AF,证明△DAE≌△DAF(SAS),由全等三角形的判定与性质得出DE=DF,由勾股定理求出DE的
长,根据三角形的面积可求出答案.
解:将△AEC顺时针方向旋转90°至△AFB,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
根据旋转的性质可得△AEC≌△ABF,
∴∠ABF=∠ACD=45°,∠BAF=∠CAE,AE=AF,
∴∠FBE=45°+45°=90°,BF=CE,
∴BD2+BF2=DF2,
∵∠DAE=45°,
∴∠BAD+∠CAE=45°,
∴∠BAD+∠BAF=45°,
∴∠DAE=∠DAF,
又∵AD=AD,
∴△DAE≌△DAF(SAS),
第15页共26页更多资料加微信:.
∴DE=DF,
∴BD2+BF2=DE2,
∵BD=3,CE=4,
∴DE5,
22
∴BC==BD3+D+E4+C=E=3+5+4=12,
∴AB=AC=126,
2
×=2
∴△ABC的面积为236.
1
×62×62=
故答案为:36.2
总结提升:本题考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定与性质,勾股定理等知识,
熟练掌握等腰直角三角形的性质是解题的关键.
模块二2023中考押题预测
1.(2021秋•潜江校级月考)如图,点E和点F是正方形ABCD的边BC和边CD上的两动点,且∠EAF=
45°,有下列结论:①EF=BE+DF;②∠AEB=∠AEF;③BG2+DG2=2AG2;④如果BE=CE,那么
DF:CF=1:3;⑤△AFE∽△AGM且相似比是;其中正确的结论有()个.
2
A.1B.2C.3D.4
思路引领:由“SAS”可证△AEF≌△AEQ,可得EQ=EF,∠AEB=∠AEF,可得BE+BQ=BE+DF=EF,
故①②正确;由勾股定理可求DF,CF的长,可得DF:CF=1:2,故④错误;由旋转的性质可得AP
=AG,∠PAG=90°,∠ADP=∠ABG=45°,由勾股定理可求BG2+DG2=2AG2,故③正确;通过证
明△EAF∽△MAG,可得相似比为,故⑤正确;即可求解.
解:如图,延长CB至Q,使BQ=D2F,连接AQ,
∵BQ=DF,∠ADF=∠ABQ,AB=AD,
第16页共26页更多资料加微信:.
∴△ADF≌△ABQ(SAS),
∴AF=AQ,∠DAF=∠BAQ,
∵∠EAF=45°,
∴∠EAQ=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,
∴∠EAQ=∠EAF=45°,
在△AEF和△AEQ中,
,
��=��
∠𝐸�=∠𝐸�=45°
∴�△�=AE�F�≌△AEQ(SAS),
∴EQ=EF,∠AEB=∠AEF,
∴BE+BQ=BE+DF=EF,故①②正确;
设AB=BC=CD=2a,
当BE=EC=a时,∵EF2=CF2+EC2,
∴(a+DF)2=(2a﹣DF)2+a2,
∴DFa,
2
=
∴CF3a,
4
∴DF=:3CF=1:2,故④错误;
如图,将△ABG绕点A逆时针旋转90°,连接PG,
∴AP=AG,∠PAG=90°,∠ADP=∠ABG=45°,
∴PG2=AG2+AP2=2AG2,∠BDP=90°,
∴DG2+PD2=PG2,
∴BG2+DG2=2AG2,故③正确;
如图,连接ME,
第17页共26页更多资料加微信:.
∵∠CBD=∠EAF=45°,
∴点A,点B,点E,点M四点共圆,
∴∠AEM=∠ABD=45°,
∴∠AEM=∠EAM=45°,
∴AM=EM,
∴AEAM,
∵∠D=AG2=90°﹣∠BAG,∠AMB=180°﹣∠ABD﹣∠EAF﹣∠BAG=90°﹣∠BAG,
∴∠DAG=∠AMB,
∵AD∥BC,
∴∠DAG=∠AEB,
∵∠AEB=∠AEF,
∴∠AMB=∠AEF,
又∵∠EAF=∠GAM,
∴△EAF∽△MAG,
∴相似比为,故⑤正确;
��
=2
故选:D.��
总结提升:本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,旋转的性质,相似
三角形的判定和性质等知识,添加恰当辅助线构造相似三角形或全等三角形是解题的关键.
2.(2023•天河区一模)如图,Rt△ABC中,AB=AC=3,AO=1,若将AD绕A点逆时针旋转90°得到
AE,连接OE,则在D点运动过程中,线段OE的最小值为.
2
思路引领:由旋转的性质可得AD=AE,∠DAE=∠BAC=90°,由“SAS”可证△ABD≌△ACE,可得
第18页共26页更多资料加微信:.
∠ACE=∠B=45°,可得点E在过点C且垂直BC的直线上运动,则当OE⊥CE时,OE的值最小,即
可求解.
解:在Rt△ABC中,AB=AC=3,
∴∠B=∠ACB=45°,
∵将AD绕A点逆时针旋转90°得到AE,
∴AD=AE,∠DAE=∠BAC=90°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
��=��
∠���=∠𝐸�
∴�△�A=B�D�≌△ACE(SAS),
∴∠ACE=∠B=45°,
∴∠BCE=90°,
∴点E在过点C且垂直BC的直线上运动,
∴当OE⊥CE时,OE的值最小,
∵AO=1,AC=3,
∴CO=2,
∵OE⊥CE,∠ACE=45°,
∴OE=CE,
∵OE2+CE2=OC2=4,
∴OE2=2,
∴OE,
故答案=为:2.
总结提升:本2题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形,勾股定理等知识,确
定点E的运动轨迹是解题的关键.
3.如图,点A与点B的坐标分别是(1,0)和(5,0),点P是该直角坐标系x轴上方的动点,并且满足
∠APB=45°,满足条件的点P有多少个?画出这一些点.
第19页共26页更多资料加微信:.
思路引领:由题意可得AB对应的圆周角为45°,所以它对应的圆心角为90°,以AB为斜边做等腰直
角三角形,其顶点即为圆的圆心,再将圆做出,则点P可以是优弧上任意一点.
解:P点有无数个.
如图,以M(3,2)为圆心,以为半径作圆,取其在x轴上方的部分圆弧,
则P点可以是此圆弧上任意一点(2不2与A、B重合),理由如下:
∵∠AMB=90°,
在优弧AB山任取点P,连接PA、PB,
有∠APB=45°.
总结提升:本题考查圆周角定理,通过题目条件将其转化为找圆周角为45°的点P的位置是解题关键.
4.(2016秋•铜山区期中)已知:如图,△ABC中,∠CAB=90°,AC=AB,点D、E是BC上的两点,且
∠DAE=45°,△ADC与△ADF关于直线AD对称.求证:(1)∠FAE=∠BAE;
(2)CD2+BE2=DE2.
第20页共26页更多资料加微信:.
思路引领:(1)根据折叠的性质得到△AFD≌△ADC,根据全等三角形的性质得到AC=AF,CD=FD,
∠C=∠DFA,∠CAD=∠FAD,由于AB=AC,于是得到AF=AB,证得∠FAE=∠BAE,即可得到结论;
(2)根据全等三角形的性质得到AC=AF,CD=FD,∠C=∠DFA,由已知条件得到AF=AB,推出△
AFE≌△ABE,求得EF=BE,∠B=∠EFA,根据勾股定理即可得到结论.
证明:(1)∵△ADC与△ADF关于直线AD对称,
∴△AFD≌△ADC;
∴∠CAD=∠FAD,
∵∠CAB=90°,∠DAE=45°,
∴∠FAD+∠FAE=45°,∠CAD+∠EAB=45°,
∴∠FAE=∠BAE;
(2)∵△AFD≌△ADC,
∴AC=AF,CD=FD,∠C=∠DFA,
又∵AB=AC,
∴AF=AB,
在△AFE与△ABE中,
∵,
��=��
∠𝐸�=∠���
∴△�A�F=E≌��△ABE,
∴EF=BE,∠B=∠EFA,
∴∠DFE=∠DFA+∠EFA=∠B+∠C=90°
在Rt△DFE中,DF2+EF2=DE2,
即:CD2+BE2=DE2.
总结提升:本题考查了全等三角形的判定和性质,轴对称的性质,熟练掌握全等三角形的判定和性质是
第21页共26页更多资料加微信:.
解题的关键.
5.(2022•海口模拟)如图①,在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,若
EG⊥FH,
(1)求证:EG=FH;
(2)如果把题目中的“正方形”改为“长方形”,若AB=3,BC=4(如图②),求的值;
��
(3)如果把题目中的“EG⊥FH”改为“EG与FH的夹角为45°”(如图③),若正�方�形ABCD的边长
为2,FH的长为,求EG的长.
5
思路引领:(1)过点H作HN⊥BC交于N,过点G作GM⊥BA交于M,证明△HFN≌△GEM(ASA)
即可求解;
(2)过点H作HQ⊥BC交于Q,过点G作GP⊥AB交于P,由(1)可得△QHF∽△PGE,再由,
��𝐴
=
可求;��𝐸
��3
=
(3)�过�A作4AN∥EG交CD于N,过A作AM∥HF交BC于M,以A为旋转中心,△ADN绕A点顺时
针旋转90°到△PBA,可证明△PAM≌△NAM(SAS),设DN=x,则NC=2﹣x,MN=PM=x+1,在
Rt△MNC中,(1+x)2=(2﹣x)2+1,求出DN,在Rt△ADN中,求出AN,再由AN=EG即
2210
可求解.=3=3
(1)证明:过点H作HN⊥BC交于N,过点G作GM⊥BA交于M,
∵四边形ABCD是正方形,
∴MG=HN,
∵HF⊥EG,
∴∠MGE=∠NHF,
∴△HFN≌△GEM(ASA),
第22页共26页更多资料加微信:.
∴HF=EG;
(2)解:过点H作HQ⊥BC交于Q,过点G作GP⊥AB交于P,
由(1)可得,∠QHF=∠PGE,
∴△QHF∽△PGE,
∴,
��𝐴
=
∵A�B�=3,𝐸BC=4,
∴PG=4,HQ=3,
∴;
��3
=
(3�)�过A4作AN∥EG交CD于N,过A作AM∥HF交BC于M,以A为旋转中心,△ADN绕A点顺时
针旋转90°到△PBA,
∵AB=2,FH,
∴BM=1,=5
∵EG与FH的夹角为45°,
∴∠MAN=45°,
∴∠BAM+∠DAN=45°,
∴∠PAM=45°,
∵AP=AN,
∴△PAM≌△NAM(SAS),
∴PM=MN,
设DN=x,则NC=2﹣x,MN=PM=x+1,
在Rt△MNC中,(1+x)2=(2﹣x)2+1,
解得x,
2
=
∴D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:教育家精神融入公费师范生培养的实践模型与长效机制研究
- 课题申报参考:家庭综合能源系统优化运行及其干扰管理研究
- 2025年度个人快件运输合同范本(快递服务版)2篇
- 二零二五版龙门吊设备维修配件供应与库存管理合同4篇
- 影视作品2025年度海外发行合同3篇
- 2025年智能交通系统建设投资合同2篇
- 二手房买卖合同按揭贷款范文(2024版)
- 二零二五年度国际文化交流捐赠协议3篇
- 二零二五年度城市排水管网疏浚承包合同样本4篇
- 2025年新能源汽车电池更换服务合同模板4篇
- 广东省佛山市2025届高三高中教学质量检测 (一)化学试题(含答案)
- 人教版【初中数学】知识点总结-全面+九年级上册数学全册教案
- 2024-2025学年人教版七年级英语上册各单元重点句子
- 公司结算资金管理制度
- 2024年小学语文教师基本功测试卷(有答案)
- 项目可行性研究报告评估咨询管理服务方案1
- 5岁幼儿数学练习题
- 新版药品批发企业质量管理体系文件大全
- 项目管理实施规划-无锡万象城
- 浙大一院之江院区就诊指南
- 离婚协议书电子版下载
评论
0/150
提交评论