泰州学院《POP设计》2023-2024学年第一学期期末试卷_第1页
泰州学院《POP设计》2023-2024学年第一学期期末试卷_第2页
泰州学院《POP设计》2023-2024学年第一学期期末试卷_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页泰州学院《POP设计》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的医学图像分析中,辅助医生进行疾病诊断。假设要通过分析CT图像检测肿瘤的位置和大小,以下关于医学图像计算机视觉应用的描述,正确的是:()A.计算机视觉算法可以完全替代医生的诊断,不需要医生的进一步判断B.不同患者的个体差异和扫描参数的变化对肿瘤检测结果没有影响C.结合医生的先验知识和计算机视觉技术能够提高肿瘤检测的准确性和可靠性D.医学图像中的噪声和伪影对计算机视觉算法的性能没有影响2、计算机视觉在农业领域的应用中,例如对农作物的生长监测。假设要通过图像分析评估农作物的健康状况,以下哪种特征可能对判断病虫害的存在较为敏感?()A.农作物的颜色和纹理B.农作物的高度和形状C.农田的土壤湿度D.农田的地理位置3、在计算机视觉中,特征提取是非常关键的一步。假设我们要从图像中提取有意义的特征,用于后续的处理和分析,以下关于特征提取方法的描述,哪一项是不正确的?()A.SIFT(尺度不变特征变换)和SURF(加速稳健特征)是常用的局部特征描述子,对图像的旋转、缩放和光照变化具有一定的不变性B.HOG(方向梯度直方图)特征通过计算图像局部区域的梯度方向分布来描述图像,常用于行人检测C.深度学习中的自动特征提取,例如通过卷积神经网络学习到的特征,比手工设计的特征更具有代表性和判别力D.特征提取的结果对后续的图像处理任务影响不大,不同的特征提取方法可以得到相似的处理效果4、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义5、在三维计算机视觉中,重建物体的三维形状是一个重要任务。假设要从多视角的图像中重建一个建筑物的三维模型,以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法能够直接从两张图像中准确重建出物体的三维形状B.结构光方法在室外环境中比在室内环境中更适用C.多视图几何和深度学习相结合的方法可以提高三维重建的精度和完整性D.三维重建的结果不受图像拍摄角度和距离的影响6、在计算机视觉的目标跟踪任务中,假设要跟踪一个在人群中移动的物体。以下关于跟踪算法的选择,哪一项是需要着重考虑的?()A.算法对目标外观变化的适应性B.算法的计算复杂度,越低越好C.算法是否能够处理多个同时移动的目标D.算法在处理静态场景时的性能7、假设要开发一个能够对指纹进行识别和认证的计算机视觉系统,以下哪种特征提取和匹配方法可能在指纹识别中具有较高的准确性?()A.细节点提取B.方向场提取C.纹理特征提取D.以上都是8、计算机视觉在无人驾驶飞行器(UAV)中的应用可以辅助飞行和导航。假设一架UAV需要依靠视觉信息避开障碍物,以下关于UAV计算机视觉应用的描述,正确的是:()A.仅依靠单目视觉就能准确估计障碍物的距离和速度B.视觉信息在UAV飞行中的作用有限,主要依靠其他传感器如GPSC.多目视觉和深度学习算法的结合可以为UAV提供更准确的环境感知和障碍物避让能力D.UAV的飞行速度和姿态对视觉系统的性能没有影响9、计算机视觉中的人脸识别技术应用广泛。假设要在一个门禁系统中实现准确的人脸识别,以下关于人脸识别方法的描述,正确的是:()A.基于几何特征的人脸识别方法对姿态和光照变化具有很强的鲁棒性B.基于模板匹配的方法能够处理大规模的人脸数据库,并且识别速度快C.深度学习中的卷积神经网络在人脸识别中能够学习到更具判别性的特征,但容易受到数据偏差的影响D.人脸识别系统一旦训练完成,就不需要更新和优化,能够一直保持高准确率10、在计算机视觉的发展中,模型的可解释性是一个重要的研究方向。以下关于模型可解释性的描述,不准确的是()A.模型可解释性旨在理解模型是如何做出决策和生成输出的B.可解释性对于建立用户对模型的信任和确保模型的公正性具有重要意义C.一些可视化技术,如特征图可视化和类激活映射,可以帮助解释模型的决策过程D.目前的计算机视觉模型都具有良好的可解释性,能够清晰地解释其决策依据11、在计算机视觉的立体视觉任务中,通过两个或多个相机获取的图像来计算深度信息。以下哪种立体匹配算法在精度和效率方面可能表现较好?()A.基于区域的匹配算法B.基于特征的匹配算法C.基于深度学习的匹配算法D.以上都是12、在计算机视觉的人脸识别任务中,假设要在一个大型数据库中快速准确地识别出特定人物的面部。数据库中的人脸图像可能存在表情、光照和姿态的变化。为了提高人脸识别的性能,以下哪种方法是常用且有效的?()A.提取人脸的全局特征,如整体形状和轮廓B.仅关注人脸的局部特征,如眼睛和嘴巴C.使用多模态数据,结合人脸的纹理和深度信息D.随机选择人脸特征进行匹配13、图像压缩是为了减少图像的数据量,同时保持可接受的视觉质量。假设我们需要在网络上传输大量的图像,以下哪种图像压缩标准能够在保证较高压缩比的同时,提供较好的图像质量?()A.JPEGB.PNGC.GIFD.BMP14、在计算机视觉的人脸识别任务中,假设要实现一个能够在不同光照和表情下准确识别的系统。以下关于数据预处理的步骤,哪一项是最重要的?()A.对人脸图像进行归一化处理,统一大小和亮度B.对图像进行锐化处理,增强面部特征C.给图像添加艺术效果,提高美观度D.随机裁剪图像,增加数据多样性15、在计算机视觉的图像增强任务中,旨在改善图像的质量。假设一张低光照条件下拍摄的照片需要增强。以下关于图像增强方法的描述,哪一项是错误的?()A.可以通过直方图均衡化方法增强图像的对比度B.基于滤波的方法能够去除图像中的噪声,同时增强细节C.图像增强可以无限制地提高图像的质量,不存在过度增强的问题D.深度学习中的生成对抗网络(GAN)也可以用于图像增强16、在计算机视觉领域中,当需要对监控视频中的行人进行实时检测和跟踪,以实现智能安防系统的功能时,以下哪种方法在处理复杂场景和多目标跟踪方面可能表现更为出色?()A.基于传统图像处理的方法B.基于深度学习的目标检测算法C.基于特征匹配的跟踪算法D.基于光流法的跟踪算法17、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响18、在计算机视觉的动作识别任务中,识别视频中的人物动作。假设要识别一段舞蹈视频中的动作,以下关于动作识别方法的描述,哪一项是不正确的?()A.可以提取视频中的时空特征,如光流和运动轨迹,来描述动作B.基于深度学习的方法,如3D卷积神经网络,能够直接处理视频数据,进行动作识别C.动作识别需要考虑动作的速度、幅度和节奏等特征D.动作识别只适用于简单的、规范化的动作,对于复杂的、个性化的动作无法准确识别19、计算机视觉中的图像去噪旨在去除图像中的噪声,同时保留图像的细节和结构。假设我们有一张受到严重噪声污染的医学图像,以下哪种图像去噪方法能够在去除噪声的同时,最大程度地保留图像的边缘和纹理信息?()A.均值滤波B.中值滤波C.高斯滤波D.基于小波变换的去噪方法20、计算机视觉中的图像修复旨在恢复图像中缺失或损坏的部分。假设一张珍贵的老照片有部分区域损坏,需要进行修复以还原其完整的内容。以下哪种图像修复方法在处理这种情况时能够生成更自然和逼真的结果?()A.基于扩散的图像修复B.基于纹理合成的图像修复C.基于深度学习的图像修复D.基于样例的图像修复二、简答题(本大题共3个小题,共15分)1、(本题5分)简述计算机视觉中的语义分割任务。2、(本题5分)解释计算机视觉在专利服务中的作用。3、(本题5分)说明计算机视觉在海洋声学研究中的作用。三、分析题(本大题共5个小题,共25分)1、(本题5分)研究某珠宝品牌的宣传海报设计,探讨其如何通过视觉传达展示珠宝的品质和设计感。2、(本题5分)以特斯拉汽车的展厅设计为例,分析其如何通过现代的设计风格和科技感的展示方式,吸引消费者了解和购买特斯拉汽车。3、(本题5分)一款新推出的智能手机品牌,其产品包装设计简约而精致,材质选择独特。请分析此包装设计在突出产品特点、提升品牌价值以及满足消费者心理需求方面的策略,同时探讨其在环保和可持续性方面的考虑。4、(本题5分)某艺术画廊的宣传折页设计以艺术作品展示和艺术

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论