版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华师大版八年级上册数学期末试卷一.选择题(共10小题,满分30分,每小题3分)1.一组数据共50个,分为6组,第1~4组的频数分别为5,7,8,10,第5组的频率为0.20,则第6组的频数为()A.10 B.11 C.12 D.152.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+ C.12或7+ D.以上都不对3.下列运算正确的是()A.a3•a4=a12 B.(a3)2=a5 C.(3a2)3=27a6 D.a6÷a3=a24.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.15.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm6.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB8.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③ B.②①③ C.②③① D.③②①9.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19 D.19或2310.如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5° B.30° C.45° D.67.5°二.填空题(共5小题,满分15分,每小题3分)11.比较大小:2(填“>”或“<”或“=”)12.(﹣2a2)2•a=;若am=2,an=3,则a3m+2n=.13.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC=.14.一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有人.15.如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有人.三.解答题(共6小题)16.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?17.阅读材料:数学课上,吴老师在求代数式x2﹣4x+5的最小值时,利用公式a2±2ab+b2=(a±b)2,对式子作如下变形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1,当x=2时,(x﹣2)2+1=1,因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值为1.通过阅读,解下列问题:(1)代数式x2+6x+12的最小值为;(2)求代数式﹣x2+2x+9的最大或最小值;(3)试比较代数式3x2﹣2x与2x2+3x﹣7的大小,并说明理由.18.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.19.某班为了解学生每周进行体育锻炼的时间情况,对全班60名学生进行调查,按每周进行体育锻炼的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8),绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班每周进行体育锻炼时间在0≤t≤4的学生中任选2人,求这2人每周进行体育锻炼时间都在2<t≤4中的概率.20.如图,在△ABC中,∠ABC=∠C,D是BA延长线上一点,E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM;②连接BE并延长,交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并证明你的结论.21.已知,如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)若点F是BE的中点,连接DF,且CF=2,求等边三角形△ABC的边长.
参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:根据题意,得第五组频数是50×0.20=10,故第六组的频数是50﹣5﹣7﹣8﹣10﹣10=10.故选:A.2.解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选:C.3.解:A.a3•a4=a7,故本选项不合题意;B.(a3)2=a6,故本选项不合题意;C.(3a2)3=27a6,正确,故选项C符合题意;D.a6÷a3=a3,故本选项不合题意.故选:C.4.解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故选:B.5.解:∵AB∥CF,∴∠ADE=∠EFC,在△ADE和△CFE中,∴△ADE≌△CFE,∴AD=CF=5cm,∵AB=8cm,∴BD=8﹣5=3cm.故选:B.6.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.7.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.8.解:角平分线的作法是:在OA和OB上分别截取OD,OE,使OD=OE;分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C;作射线OC.故其顺序为②③①.故选:C.9.解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选:D.10.解:∵BE=DB,∴∠BDE=∠E,∵∠DBA=∠BDE+∠BED=45°∴∠BDE=×45°=22.5°.故选:A.二.填空题(共5小题,满分15分,每小题3分)11.解:∵2=<,∴>2,故答案为:>.12.解:(﹣2a2)2•a=4a4•a=4a5;∵am=2,an=3,∴a3m+2n=a3m•a2n=(am)3•(an)2=23×32=8×9=72.故答案为:4a5;72.13.解:∵EF是AB的垂直平分线,∴FA=BF=12,∴AC=AF+FC=15.故答案为:15.14.解:∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故答案为:20.15.解:∵参加STEAM课程兴趣小组的人数为120人,百分比为20%,∴参加各兴趣小组的学生共有120÷20%=600(人),故答案为:600.三.解答题(共6小题)16.解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC==2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5﹣0.7=0.8m答:梯足向外移动了0.8m.17.解:(1)x2+6x+12=(x+3)2+3,当x=﹣3时,(x+3)2+3=3,因此(x+3)2+3有最小值3,即代数式x2+6x+12的最小值为3;故答案是:3.(2)∵﹣x2+2x+9=﹣(x﹣1)2+10由于(x﹣1)2≥0,所以﹣(x﹣1)2≤0当x=1时,﹣(x﹣1)2=0,则﹣x2+2x+9最大值为10;(3)∵(3x2﹣2x)﹣(2x2+3x﹣7)=x2﹣5x+7=由于∴,即3x2﹣2x>2x2+3x﹣7.18.证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠FAP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.19.解:(1)E类学生有60﹣(2+3+22+18)=15(人),补全图形如下:故答案为:15;(2)D类学生人数占被调查总人数的×100%=30%,故答案为:30;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人锻炼时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人锻炼时间都在2<t≤4中的概率为.20.解:(1)如图所示,AM是∠DAC的平分线;(2)BC=AF,BC∥AF.理由:在△ABC中,AB=AC,∴∠ABC=∠C,∠C+∠ABC+∠BAC=180°,∴∠C=90°﹣∠BAC,∵AM是∠CAD的平分线,∴2∠CAM=∠CAD,∵∠BAC+∠CAD=180°,∴2∠CAM+∠BAC=180°,∴∠CAM=90°﹣∠BAC,∴∠C=∠CAM,∴AF∥BC,∵点D是AC中点,∴AE=CE,在△BCE和△FAE中,,∴△BCE≌△FAE,∴BC=AF即:BC=AF,BC∥AF.21.(1)证明:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 膜片弹簧课程设计
- 南京市飞机租赁合同3篇
- 二手住宅买卖合同格式模板3篇
- 大理石许可合同3篇
- 车位出售需要合同范例
- 车辆借条合同范例
- 总价外协合同范例
- 车体广告合同范例
- 工厂并购合同范例
- 绿化清理养护合同范例
- 青年应有鸿鹄志当骑骏马踏平川课件高三上学期励志主题班会
- 河北省唐山市2021-2022学年高三上学期语文期末试卷
- oa系统合同范例
- 华电甘肃能源有限公司华电系统内外招聘真题
- 《文明礼仪概述培训》课件
- 新疆大学答辩模板课件模板
- 数值分析智慧树知到期末考试答案2024年
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 跨文化沟通心理学智慧树知到期末考试答案2024年
- 《中华民族共同体概论》考试复习题库(含答案)
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
评论
0/150
提交评论