版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省武汉市新洲区高考仿真卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,则的虚部为()A.-1 B. C.1 D.2.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.3.若不等式对于一切恒成立,则的最小值是()A.0 B. C. D.4.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.5.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.6.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.7.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.9.已知实数,则下列说法正确的是()A. B.C. D.10.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.11.如图,设为内一点,且,则与的面积之比为A. B.C. D.12.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)14.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.15.三棱柱中,,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_____.16.函数的极大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,不等式恒成立.(1)求证:(2)求证:.18.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,__________,,,,是否存在正整数,使得成立?19.(12分)已知,函数.(1)若,求的单调递增区间;(2)若,求的值.20.(12分)设,函数,其中为自然对数的底数.(1)设函数.①若,试判断函数与的图像在区间上是否有交点;②求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.21.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.22.(10分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.2、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.3、C【解析】
试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题4、B【解析】
由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.5、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.6、B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.7、C【解析】
化简复数为、的形式,可以确定对应的点位于的象限.【详解】解:复数故复数对应的坐标为位于第三象限故选:.【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.8、B【解析】
求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.9、C【解析】
利用不等式性质可判断,利用对数函数和指数函数的单调性判断.【详解】解:对于实数,,不成立对于不成立.对于.利用对数函数单调递增性质,即可得出.对于指数函数单调递减性质,因此不成立.故选:.【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.10、A【解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.11、A【解析】
作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【详解】如图,作交于点,则,由题意,,,且,所以又,所以,,即,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.12、A【解析】
根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.14、③④【解析】
由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断.【详解】①若且,的位置关系是平行、相交或异面,①错;②若且,则或者,②错;③若,设过的平面与交于直线,则,又,则,∴,③正确;④若,且,由线面垂直的定义知,④正确.故答案为:③④.【点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础.15、【解析】
分析题意可知,三棱柱为正三棱柱,所以三棱柱的中心即为外接球的球心,设棱柱的底面边长为,高为,则三棱柱的侧面积为,球的半径表示为,再由重要不等式即可得球表面积的最小值【详解】如下图,∵三棱柱为正三棱柱∴设,∴三棱柱的侧面积为∴又外接球半径∴外接球表面积.故答案为:【点睛】考查学生对几何体的正确认识,能通过题意了解到题目传达的意思,培养学生空间想象力,能够利用题目条件,画出图形,寻找外接球的球心以及半径,属于中档题16、【解析】
对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】
(1)先根据绝对值不等式求得的最大值,从而得到,再利用基本不等式进行证明;(2)利用基本不等式变形得,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【详解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即两边开平方得.同理可得,.三式相加,得.【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.18、见解析【解析】
根据等差数列性质及、,可求得等差数列的通项公式,由即可求得的值;根据等式,变形可得,分别讨论取①②③中的一个,结合等比数列通项公式代入化简,检验是否存在正整数的值即可.【详解】∵在等差数列中,,∴,∴公差,∴,∴,若存在正整数,使得成立,即成立,设正数等比数列的公比为的公比为,若选①,∵,∴,∴,∴,∴当时,满足成立.若选②,∵,∴,∴,∴,∴方程无正整数解,∴不存在正整数使得成立.若选③,∵,∴,∴,∴,∴解得或(舍去),∴,∴当时,满足成立.【点睛】本题考查了等差数列通项公式的求法,等比数列通项公式及前n项和公式的应用,递推公式的简单应用,补充条件后求参数的值,属于中档题.19、(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.【详解】(1)当时,,由,得,因此,函数的单调递增区间为;(2),,,,,,.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.20、(1)①函数与的图象在区间上有交点;②证明见解析;(2)且;【解析】
(1)①令,结合函数零点的判定定理判断即可;②设切点横坐标为,求出切线方程,得到,根据函数的单调性判断即可;(2)求出的解析式,通过讨论的范围,求出函数的单调区间,确定的范围即可.【详解】解:(1)①当时,函数,令,,则,,故,又函数在区间上的图象是不间断曲线,故函数在区间上有零点,故函数与的图象在区间上有交点;②证明:假设存在,使得直线是曲线的切线,切点横坐标为,且,则切线在点切线方程为,即,从而,且,消去,得,故满足等式,令,所以,故函数在和上单调递增,又函数在时,故方程有唯一解,又,故不存在,即证;(2)由得,,,令,则,,当时,递减,故当时,,递增,当时,,递减,故在处取得极大值,不合题意;时,则在递减,在,递增,①当时,,故在递减,可得当时,,当时,,,易证,令,,令,故,则,故在递增,则,即时,,故在,内存在,使得,故在,上递减,在,递增,故在处取得极小值.②由(1)知,,故在递减,在递增,故时,,递增,不合题意;③当时,,当,时,,递减,当时,,递增,故在处取极小值,符合题意,综上,实数的范围是且.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.21、(1);(2)①;②证明见解析.【解析】
(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)①若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;②当,,,由等比数列的定义和不等式的性质,化简变形,即可得到所求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直筒模具设计课程设计
- 说明文课程设计
- 课程设计宿舍供电
- 课程设计压缩包
- 2025年度科技园区物业房屋租赁管理服务协议3篇
- 2025年小学班主任班级工作总结范文(2篇)
- 2025年事业单位年检工作年终总结模版(2篇)
- 通信原理课程设计实验
- 二零二五年度数据中心电力需求响应服务合同2篇
- 二零二五年度建筑垃圾资源化处理质量合同3篇
- 中考句子翻译经典100句
- 2024年环境影响评价工程师之环评法律法规题库及完整答案【各地真题】
- 公务员考试常识题库500题(含答案)V
- 华为基于价值链循环的绩效管理体系建设
- 手机拍摄短视频
- 招聘专员述职报告doc
- 英语-北京市西城区2023-2024学年高三期末考试题和答案
- 福利待遇综述
- 竣工验收阶段服务配合保障措施
- 电缆及电缆桥架安装施工方案
- 跨部门沟通与协调课件
评论
0/150
提交评论