版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆第二师华山中学高考数学二模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为()A.1 B. C. D.2.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()A.2 B.3 C.5 D.83.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A. B. C. D.4.设(是虚数单位),则()A. B.1 C.2 D.5.函数在区间上的大致图象如图所示,则可能是()A.B.C.D.6.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.7.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则()A., B.,C., D.,8.已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是()①与点距离为的点形成一条曲线,则该曲线的长度是;②若面,则与面所成角的正切值取值范围是;③若,则在该四棱柱六个面上的正投影长度之和的最大值为.A. B. C. D.9.的展开式中的项的系数为()A.120 B.80 C.60 D.4010.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.11.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.12.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________.14.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.15.设为数列的前项和,若,则____16.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.(1)求及;(2)设,设数列的前项和,证明:.18.(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)19.(12分)已知函数f(x)=x(1)讨论fx(2)当x≥-1时,fx+a20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.21.(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.22.(10分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,,故令,得当时,当,当时,故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.2、D【解析】
画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时,,则不满足题意;当时,当时,,没有整数解当时,,至少有两个整数解综上,实数的最大值为故选:D【点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.3、C【解析】
求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.4、A【解析】
先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.【详解】∵,∴.故选:A.【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题.5、B【解析】
根据特殊值及函数的单调性判断即可;【详解】解:当时,,无意义,故排除A;又,则,故排除D;对于C,当时,,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.6、B【解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.7、A【解析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得.,,,,则,由余弦定理得,,,又,,当平面平面时,,,排除B、D选项;因为,,此时,,当平面平面时,,,排除C选项.故选:A.【点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.8、C【解析】
①与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;②当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;③设,,,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和.【详解】如图:①错误,因为,与点距离为的点形成以为圆心,半径为的圆弧,长度为;②正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是;③正确,设,则,即,在前后、左右、上下面上的正投影长分别为,,,所以六个面上的正投影长度之,当且仅当在时取等号.故选:.【点睛】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题.9、A【解析】
化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.10、D【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.11、D【解析】
根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.12、D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积.【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题.14、【解析】
观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。【详解】八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。故答案为:。【点睛】本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的条数,这样才能正确地确定基本事件的个数。15、【解析】
当时,由,解得,当时,,两式相减可得,即,可得数列是等比数列再求通项公式.【详解】当时,,即,当时,,两式相减可得,即,即,故数列是以为首项,为公比的等比数列,所以.故答案为:【点睛】本题考查数列的前项和与通项公式的关系,还考查运算求解能力以及化归与转化思想,属于基础题.16、【解析】
根据向量共线定理得A,B,C三点共线,再根据点斜式得结果【详解】因为,且α+β=1,所以A,B,C三点共线,因此点C的轨迹为直线AB:【点睛】本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)证明见解析.【解析】
(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【点睛】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.18、(1);(2)2个,证明见解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1°当时,在上单调递减,时,使得,与条件矛盾;2°当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;而时,,要使恒成立,故.(2)原问题转化为方程实根个数问题,当时,图象与图象有且仅有2个交点,理由如下:由,即,令,因为,所以是的一根;,1°当时,,所以在上单调递减,,即在上无实根;2°当时,,则在上单调递递增,又,所以在上有唯一实根,且满足,①当时,在上单调递减,此时在上无实根;②当时,在上单调递增,,故在上有唯一实根.3°当时,由(1)知,在上单调递增,所以,故,所以在上无实根.综合1°,2°,3°,故有两个实根,即图象与图象有且仅有2个交点.【点睛】此题考查不等式恒成立问题、函数与方程的转化思想,考查导数的运用,属于较难题.19、(1)见解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-1e+1恒成立.当x>-1时,a≤xe【详解】解法一:(1)f①当a≤0时,x(-∞-1(-1,+∞)f-0+f(x)↘极小值↗所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)单调递增.②当a>0时,f'(x)=0的根为x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,-1),(lna,+∞)上单调递增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,lna),(-1,+∞)上单调递增,在综上:当a≤0时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增;当0<a<1e时,f(x)在(-∞,lna),自a=1e时,f(x)在当a>1e时,f(x)在(-∞,-1),(ln(2)因为xex-ax-a+1≥0当x=-1时,0≤-1当x>-1时,a≤x令g(x)=xex设h(x)=e因为h'(x)=e即hx=e又因为h0=0,所以g(x)=xex则g(x)min=g(0)=1综上,a的取值范围为-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'当a≤0时,g'(x)≥0,则g(x)在所以g(x)≥g(-1)=-1当0<a≤1时,令h(x)=e因为h'(x)=2ex+x又因为h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘极小值↗g==-e当a>1时,g(0)=-a+1<0,不满足题意.综上,a的取值范围为-∞,1.【点睛】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.20、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数.从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利用(1)(2)的结果,可估算两公司的每位员工在该月所得的劳务费.【详解】解:(1)由题意知甲公司员工在这10天投递的快递件数的平均数为.众数为330.(2)设乙公司员工1天的投递件数为随机变量,则当时,当时,当时,当时,当时,的分布列为20421922827
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 头孢孟多酯钠光稳定性考察-洞察分析
- 励志少年事迹材料(7篇)
- 文化记忆与记忆空间-洞察分析
- 双线性滤波在计算机视觉中的应用-洞察分析
- 网络边缘设备认证技术-洞察分析
- 医务工作者先进个人主要事迹(6篇)
- 《客户服务技巧解析》课件
- 《火眼金睛辨身》课件
- 从传统到现代展会活动的演变与展览设计的创新发展研究
- 企业文档高新技术企业认定管理办法解读课件
- 高中高一级部拔河比赛活动实施方案
- 每日食品安全检查记录
- 航空机务专业职业生涯规划书
- 八年级英语上学期期末考试(深圳卷)-2023-2024学年八年级英语上册单元重难点易错题精练(牛津深圳版)
- 项目成本节约措施总结报告
- 高中化学课件:水溶液中离子平衡图像分析
- 迎元旦趣味活动及知识竞赛试题及答案
- SH/T 3543-2007 石油化工建设工程项目施工过程技术文件规定
- 减盐控油控制体重规章制度
- 建筑之歌课件PPT
- (完整版)员工流失文献综述
评论
0/150
提交评论