版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时作业42直线、平面垂直的判定和性质一、选择题1.(2018·新疆第二次适应性检测)设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,n⊂α,则m∥α其中正确命题的序号是()A.①③B.①④C.②③D.②④解析:对于①,因为平行于同一个平面的两个平面相互平行,所以①正确;对于②,当直线m位于平面β内,且平行于平面α,β的交线时,满足条件,但显然此时m与平面β不垂直,因此②不正确;对于③,在平面β内取直线n平行于m,则由m⊥α,m∥n,得n⊥α,又n⊂β,因此有α⊥β,③正确;对于④,直线m可能位于平面α内,显然此时m与平面α不平行,因此④不正确.综上所述,正确命题的序号是①③,选A.答案:A2.(2017·新课标全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CDA.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:如图,∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B,D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥∵A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错.故选C.答案:C3.(2018·银川一模)如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AH⊥平面EFHB.AG⊥平面EFHC.HF⊥平面AEFD.HG⊥平面AEF解析:由平面图形得AH⊥HE,AH⊥HF,又HE∩HF=H,∴AH⊥平面HEF,故选A.答案:A4.(2018·贵阳模拟)如图,在正棱锥P-ABC中,不能证明AP⊥BC的条件是()A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B5.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③解析:对于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB为⊙O的直径,∴BC⊥AC,又∵PA∩AC=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC.对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC.对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.答案:B6.(2018·太原二模)如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,∴CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,∴AB⊥平面ADC,又AB⊂平面ABC,∴平面ABC⊥平面ADC,故选D.答案:D二、填空题7.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确命题的个数是________.解析:如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.答案:38.(2018·湖北武汉武昌调研)在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC与直线BD垂直;②存在某个位置,使得直线AB与直线CD垂直;③存在某个位置,使得直线AD与直线BC垂直.其中正确结论的序号是________.(写出所有正确结论的序号)解析:如图,若AC⊥BD,已知CF⊥BD,AC∩CF=C,那么BD⊥平面ACF,则BD⊥AF,这与平面内,过直线外一点有且只有一条直线与已知直线垂直矛盾,所以①不正确;当点A在平面BCD内的射影落在线段BC上时,AB⊥CD,所以存在某个位置使AB⊥CD;所以②成立;若AD⊥BC,已知BC⊥CD,CD∩AD=D,所以BC⊥平面ACD,所以BC⊥AC,那么AB>BC,这与已知矛盾,所以③不正确.答案:②9.(2018·河南安阳二模)如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的为________.解析:如图所示,设AC、BD相交于点O,连接SO,EM,EN.对于①,由S-ABCD是正四棱锥,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,SD∩BD=D,SD,BD⊂平面SBD,MN,EM⊂平面EMN,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故①正确.对于②,易知EP与BD是异面直线,因此②不正确.对于③,由①可知平面EMN∥平面SBD,∴EP∥平面SBD,因此③正确.对于④,由①同理可得EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此,当P与M不重合时,EP与平面SAC不垂直.即④不正确,故选A.答案:①③三、解答题10.(2017·新课标全国卷Ⅲ)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.解析:(1)证明:如图,取AC的中点O,连接DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.BO∩DO=O,从而AC⊥平面DOB,BD⊂平面DOB,故AC⊥BD.(2)连接EO.由(1)及题设知∠ADC=90°,所以DO=AO.在Rt△AOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.由题设知△AEC为直角三角形,所以EO=eq\f(1,2)AC.又△ABC是正三角形,且AB=BD,所以EO=eq\f(1,2)BD.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的eq\f(1,2),四面体ABCE的体积为四面体ABCD的体积的eq\f(1,2),即四面体ABCE与四面体ACDE的体积之比为1∶1.11.(2018·湖南湘中教研)如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.(1)求证:平面PAB⊥平面QBC;(2)求该组合体QPABCD的体积.解析:(1)证明:因为QD⊥平面ABCD,PA∥QD,所以PA⊥平面ABCD.又BC⊂平面ABCD,所以PA⊥BC,因为AB⊥BC,且AB∩PA=A,所以BC⊥平面PAB,又BC⊂平面QBC,所以平面PAB⊥平面QBC.(2)平面QDB将几何体分成四棱锥B-PADQ和三棱锥Q-BDC两部分,过B作BO⊥AD,因为PA⊥平面ABCD,BO⊂平面ABCD,所以PA⊥BO,又AD⊥OB,PA∩AD=A,所以BO⊥平面PADQ,即BO为四棱锥B-APQD的高,因为BO=eq\r(3),S四边形PADQ=3,所以VB-PADQ=eq\f(1,3)·BO·S四边形PADQ=eq\r(3),因为QD⊥平面ABCD,且QD=2,又△BCD为顶角等于120°的等腰三角形,BD=2,S△BDC=eq\f(\r(3),3),所以VQ-BDC=eq\f(1,3)·S△BDC·QD=eq\f(2\r(3),9),所以组合体QPABCD的体积为eq\r(3)+eq\f(2\r(3),9)=eq\f(11\r(3),9).[能力挑战]12.(2017·山东卷)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创新劳动教育模式推动学生全面发展
- 2025年通化道路货物运输从业资格证模拟考试
- 2025年遵义大车货运资格证考试题
- 2025年雅安货物运输驾驶员从业资格考试系统
- 2025年朝阳c1货运从业资格证考试题下载
- 2025年成都货运从业资格证模拟考试试题及答案解析
- 七年级 下学期 地理 商务星球版《东南亚》同步训练
- 2025年山东货运从业资格证模拟考试题库及答案解析
- 从客户反馈中学习持续改进的服务策略
- 2025年云浮下载货运从业资格证模拟考试题
- 微积分(II)知到智慧树章节测试课后答案2024年秋南昌大学
- 二零二四年光伏电站建设与运营管理合同2篇
- 2024届浙江台州高三一模英语试题含答案
- 2024版:离婚法律诉讼文书范例3篇
- 一专科一特色护理汇报
- 小学体育新课标培训
- 2024年国考申论真题(行政执法卷)及参考答案
- 江苏省南通市2024-2025学年高一上学期11月期中英语试题(无答案)
- 2024年11月绍兴市2025届高三选考科目诊断性考试(一模) 技术试卷(含答案详解)
- 技术回转窑液压挡轮常见问题及修复方案
- 胃穿孔疑难病例讨论
评论
0/150
提交评论