版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EVBatterySupply
ChainSustainability
Lifecycleimpactsandtheroleofrecycling
>
>
INTERNATIONALENERGY
AGENCY
TheIEAexaminesthefull
spectrum
ofenergyissues
includingoil,gasandcoalsupplyand
demand,renewableenergytechnologies,electricitymarkets,energyefficiency,
accesstoenergy,demandside
managementandmuchmore.Throughitswork,theIEAadvocates
policiesthatwillenhancethereliability,
affordabilityand
sustainabilityofenergyinits
32Membercountries,13Associationcountriesandbeyond.
Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationof
internationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.
Source:IEA.
InternationalEnergyAgencyWebsite:
IEAMembercountries:
AustraliaAustria
BelgiumCanada
CzechRepublic
DenmarkEstonia
Finland
France
GermanyGreece
HungaryIreland
Italy
Japan
Korea
Latvia
Lithuania
LuxembourgMexico
NetherlandsNewZealandNorway
Poland
Portugal
SlovakRepublicSpain
Sweden
Switzerland
RepublicofTürkiyeUnitedKingdom
UnitedStates
TheEuropean
CommissionalsoparticipatesintheworkoftheIEA
IEAAssociationcountries:
ArgentinaBrazil
China
Egypt
India
IndonesiaKenya
MoroccoSenegal
Singapore
SouthAfricaThailand
Ukraine
EVBatterySupplyChainSustainabilityHighlights
IEA.CCBY4.0.
PAGE|3
Highlights
Batterydemandissettocontinuegrowingfastbasedoncurrentpolicysettings,increasingfour-and-a-halftimesby2030andmorethanseventimesby2035.Theroleofemergingmarketsanddevelopingeconomies(EMDEs)otherthanPeople’sRepublicofChina(hereafter,“China”)isexpectedtogrow,reaching10%ofglobalbatterydemandby2030,upfrom3%in2023.Batteryproductionisalsoexpectedtodiversify,mostlythankstoinvestmentsinEuropeandNorthAmericaundercurrentpolicies,and–ifallannouncedclimatepledgesarefulfilled–throughlargerdemandandproductioninEMDEsotherthanChina.
Fromalifecycleperspective,theemissionsofamedium-sizebatteryelectriccararehalftheemissionsofanequivalentinternalcombustionengine(ICE)carasaglobalaverage.ThisdifferenceinemissionsissimilartotheglobalaverageinChina,largerintheUnitedKingdomandChile(over60%),andsmallerinIndia(20%).
Battery-relatedemissionsplayanotableroleinelectricvehicle(EV)lifecycleemissions,thoughtheyarenotthelargestcontributor.However,reducingemissionsrelatedtobatteryproductionandcriticalmineralprocessingremainsimportant.Emissionsrelatedtobatteriesandtheirsupplychainsaresettodeclinefurtherthankstotheelectrificationofproductionprocesses,increased
energydensityanduseofrecycledmaterials.
Inthenextdecade,recyclingwillbecriticaltorecovermaterialsfrommanufacturingscrap,andlookingfurtherahead,torecycleend-of-lifebatteriesandreducecriticalmineralsdemand,particularlyafter2035,whenthenumberofend-of-lifeEVbatterieswillstartgrowingrapidly.Ifrecyclingisscaledeffectively,recyclingcanreducelithiumandnickeldemandby25%,andcobaltdemandby40%in2050,inascenariothatmeetsnationalclimatetargets.Scalinguprecyclingfacilitiesandincreasingcollectionratesofend-of-lifebatterieswillbeessential.
Second-handEVscouldboostelectricmobilityinEMDEsotherthanChina.Strengtheninginternationalco-operationiscentraltosupportinternationaltradeofsecond-handEVswhileensuringadequateend-of-lifestrategiesforthevehiclesandtheirbatteries.
EVBatterySupplyChainSustainabilityAcknowledgements
IEA.CCBY4.0.
PAGE|4
Acknowledgements
EVBatterySupplyChainSustainabilitywaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).TheprojectwasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.AraceliFernandezPales,HeadoftheTechnologyInnovationUnit,providedstrategicguidancethroughoutthedevelopmentoftheproject.ElizabethConnellyco-ordinatedtheanalysisandproductionofthereport.
TheprincipalIEAauthorswereTeoLombardoandShobhanDhir.
ValuableinsightsandfeedbackwereprovidedbycolleaguesfromacrosstheIEA,includingHughHopewell,ApostolosPetropoulos,OskarasAlšauskasandMaxSchoenfisch.LizzieSayereditedthemanuscript.CharlotteBracke,AnnaKalista,MaoTakeuchiandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.
ThanksgototheIEA’sCommunicationsandDigitalOffice,particularlytoJethroMullen,PoeliBojorquez,CurtisBrainard,JonCuster,AstridDumond,MerveErdil,GraceGordon,JuliaHorowitz,OliverJoy,LorenzoSquillace,LucileWallandWonjikYang.
ThereportwaspreparedbytheInternationalEnergyAgencyundertheGlobalE-MobilityProgrammefundedbytheGlobalEnvironmentFacility.TheworkcouldnothavebeenachievedwithoutthefinancialsupportprovidedbytheGlobalEnvironmentFacility.Inparticular,wewouldliketoacknowledgetheUnitedNationsEnvironmentProgrammeastheleadimplementingagencyundertheprogrammeandalltheireffortsinco-ordinatingthepreparations,planningandroll-outofitsactivities.
EVBatterySupplyChainSustainabilityTableofcontents
IEA.CCBY4.0.
PAGE|5
Tableofcontents
Theroleofbatteriesisexpectedtokeepgrowing 6
Electriccarsremainthemainengineofbatterydemandgrowth 6
Outlookforbatterydemandandproduction 8
TheimpactofEVsandbatteriesonemissions 12
Electriccarsofferemissionsbenefitstoday,evenwhenconsideredonalifecyclebasis 12
Batterychemistryimpactslifecycleemissions 15
Batteryrecyclingcanreducecriticalmineraldemandandimprovesustainability 17
Batteryrecyclingisgettingreadyforlargersuppliesinthe2030s 17
ImpactofusedEVexportsonrecycling 20
Policiestosupportbatterysustainabilityandcircularity 22
Currentpoliciesandinitiatives 22
Policyrecommendations 23
Annex 26
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
Theroleofbatteriesisexpectedtokeepgrowing
Electriccarsremainthemainengineofbatterydemandgrowth
GrowthinEVsalesandbatterystorage
1
installationscontinuetodrivebatterydemand,whichreached850GWhin2023,upmorethan40%from2022.EVsremainthemainsourceofbatterydemand,accountingfor750GWhoralmost90%ofthetotalin2023,withelectriccarsalonerepresentingabout80%oftotalbatterydemand.Batterystoragedemanddoubledinboth2022and2023,albeitfromalowerbasethandemandforEVbatteries.
OverallbatterydemandintheEuropeanUnionandtheUnitedStatesgrewfasterthantheglobalaveragein2023,reaching45%year-on-year,closelyfollowedbyChinaat40%.Intermsoftotalvolume,Chinaremainsthelargestbatterymarket,accountingforabout55%ofglobaldemandin2023,followedbytheEuropeanUnionandtheUnitedStates,atabout15%each.EMDEsotherthanChinatodayaccountforasmallshareoftotalbatterydemand,buttheirroleisexpanding.In2023,theirshareinglobalbatterydemandreachedmorethan3%,nearlydoublethatjust2yearsearlier.Indiaaccountedforalmostone-thirdofbatterydemandinEMDEsotherthanChina.
ThebatterystoragemarketisgrowingfastestinChina,wheredemandforbatterystoragesystemsreached45GWhin2023,almosttriplethedemandin2022.Demandforbatterystorageisdrivenbythegrowthinrenewableenergy,withChinainstallingmoreintermittentrenewablecapacitythantherestoftheworldcombinedin2023.IntheUnitedStatesandtheEuropeanUnion,thebatterystoragemarketgrewfasterthantheEVbatterymarket,butsignificantlyslowerthaninChina,withyear-on-yeargrowthofnearly65%andover80%,respectively.Thisisequivalenttoanadditional25GWhofbatterystorageintheUnitedStatesand12GWhintheEuropeanUnion.MarketsforbatterystoragearestillnascentinEMDEsotherthanChina,withlessthan1GWhintotaladdedin2023.MorethanhalfofthisdemandcamefromSoutheastAsia,followedbyAfricaandthen
1Batterystoragereferstobatteriesusedintheelectricitysector.Theyincludebothlargeutility-scaleandsmallerbehind-the-meterbatterystoragesystems.Utility-scalebatteriesareconnecteddirectlytotransmissionordistributionnetworks(front-of-the-meter)andtypicallyrangefromseveralhundredkWhtomultipleGWhinsize.Behind-the-meterbattery
storagesystemsaregenerallyinstalledatresidential,commercialorindustrialend-userlocations,withoutadedicatedconnectiontothegrid.Theyareusually(butnotalways)significantlysmallerthanutility-scalebatteries.
IEA.CCBY4.0.
PAGE|6
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
IEA.CCBY4.0.
PAGE|7
India,eachrepresentingashareofaround15%.Highercostofcapitalisamajorreasonforlowerbatterystorageinvestmentsinthoseregions,withthecostofcapitalforbatterystorageprojectsbeingatleast
twice
ashighasinadvancedeconomies.
Batterydemandbyapplicationandregion,2017-2023
GWh/year
Batterydemandbyapplication
900
800
700
600
500
400
300
200
100
0
2017201820192020202120222023
LDVTwo/three-wheelerBusTruckBatterystorage
Shareofbatterydemandbyregion
100%
80%
60%
40%
20%
0%
2017201820192020202120222023
ChinaEuropeanUnionUnitedStates
aEMDEs(exc.China)aOtherAEs
IEA.CCBY4.0.
Notes:LDV=light-dutyvehicle,includingcarsandvans;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina;AEs=Advancedeconomies.Batterystoragereferstothedemandfornewinstallations.
Source:IEA(2024),
GlobalEVOutlook2024.
In2023,EVsaccountedforover95%ofthebatterydemandinEMDEsotherthanChina,abovetheglobalaverage(almost90%).Anotherstrikingdifferencefromtheglobalaverageisthatarelativelylargeshare(about25%)ofEVbatterydemandinEMDEscamefromtwo-andthree-wheelers(2/3-wheelers)in2023,despitetheirbatteriesbeingbetween5andmorethan40timessmallerthantheaverageelectriccarbattery.Thiscomparestoa3%shareinChinaandlessthan0.5%intheEuropeanUnionandtheUnitedStates.
ThisunderlinesthepopularityandimportanceofthismodeoftransportinEMDEs,wheresalesofelectric2/3-wheelersoutsideofChinareached2millionin2023,over90%ofwhichwereinIndiaandSoutheastAsia,comparedtoelectriccarsalesofunder400000.InIndiaandSoutheastAsia,halfofpassengerkilometrestravelledonroadin2023wereby2/3-wheelers.Electrifying2/3-wheelersinthesecountriesorregionscouldthereforeofferaneffectivewaytoelectrifyalargeproportionofroadtransportthatislessbattery-intensivecomparedtoelectriccars.While2/3-wheelersandcarsprovideasimilarservice,electrifyingtheentirefleetof2/3-wheelersinIndiaandSoutheastAsiawouldrequireonly30%ofthebatteriesneededtoelectrifytheircurrentcarfleets,ifusingtheiraverageregionalbatterysizesin2023.InChina,salesof2/3-wheelersandelectriccarsin2023reachedmorethan6millionand8million,respectively,and2/3-wheelers
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
accountedforover15%ofpassengerkilometrestravelledonroad.Thiscomparestolessthan5%intheEuropeanUnion,andlessthan1%intheUnitedStatesinthesameyear.
Outlookforbatterydemandandproduction
Demandforbatteriesgrowsstronglyinallscenarios
Batterydemandissettogrowfour-and-a-halftimesby2030comparedto2023basedoncurrentpolicysettings(asreflectedintheIEA
StatedPoliciesScenario
[STEPS]),andmorethanseventimesby2035.Ifcountriesreachtheirannouncedclimateandenergypledgesinfull,asintheIEA
AnnouncedPledgesScenario
(APS),demandissignificantlyhigher,multiplyingbyfivetimesin2030andninetimesin2035.Demandgrowsevenmoreinascenarioconsistentwiththeenergysectorreachingnetzeroemissionsby2050,asintheIEA
NetZeroEmissionsby
2050Scenario
(NZEScenario),up7timesin2030and12timesin2035.Toputthisinperspective,thereismorebatterydemandperweekin2035intheAPSthantherewasintheentireyearof2019.
TheshareofEMDEsotherthanChinainglobalbatterydemandalsoincreasesthisdecade,morethantriplingtoreach10%by2030intheSTEPS.TheroleoftheseeconomiesisevengreaterintheAPS,withtheirshareofglobaldemandgrowingalmostfivefoldby2030,andmorethansixfoldin2035.ThisismostlydrivenbytransportelectrificationstrategiesandpledgesthatboostEVbatterydemand.Forexample,IndiasignedtheCOP26
declaration
toreacha100%salesshareofzero-emissionlight-dutyvehiclesby2040,andIndonesiahassetan
ambition
toreachastockof2millionelectriccarsand13millionelectricmotorbikesby2030.
Theroll-outofadequateinfrastructure,suchaschargers,battery-swappingstations,andflexibleelectricitytransmissionanddistributiongridswillbecrucialtosupportgrowthinEVuptake.As2/3-wheelersareapopularmodeofmobilityinsomeEMDEs,alargeshareofthepopulationcouldaccesselectricmobilitywithhomecharging,thusavoidingtheneedformorecapital-intensivededicatedchargers.
2
Battery-swappingfor2/3-wheelerscouldalsobeaneffectivesolutionto
boost
electricmobilityinurbanareas.
2Thebatterysizeofelectric2/3-wheelersisoftensmallenoughtorechargeathomefromaregulardomesticsocketwithoutinstallationofadedicatedcharger.
IEA.CCBY4.0.
PAGE|8
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
IEA.CCBY4.0.
PAGE|9
BatterydemandbymodeandbyregionintheStatedPoliciesScenario,AnnouncedPledgesScenarioandNetZeroEmissionsby2050Scenario,2023-2035
BymodeByregion
TWh/year
10
8
6
4
2
0
10
8
6
4
2
0
STEPS
APS
2030
NZE
NZESTEPSAPS
2023
2035
STEPS
APS
2030
NZE
NZESTEPSAPS
2023
2035
LDVTwo/three-wheelerBusTruckBatterystorage
China
UnitedStatesOtherAEs
UEuropeanUnion
UEMDEs(exc.China)Global
IEA.CCBY4.0.
Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;NZE=NetZeroEmissionsby2050Scenario;LDV=light-dutyvehicle,includingcarsandvans;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina;AEs=Advancedeconomies.Batterystoragereferstothedemandfornewinstallations.
Source:IEA(2024),
GlobalEVOutlook2024.
EffortstoboostdomesticdemandforEVsandbatteriesinEMDEsotherthanChinawouldalsobebeneficialtoattractinvestmentsindomesticmanufacturing.Long-termvisibilityandclarityonpolicy,togetherwithsupportfordomesticdemandandproduction,arecentraltogivingconfidencetoinvestorstocommittonewprojects.
Batteryproductionsettodiversify
In2023,Chinaaccountedforthelion’sshareoftheproductionofbatterycells–morethanthree-quarters–aswellasofcriticalbatterycomponentslikecathode(over80%ofproduction)andanode(over90%)activematerials.IntheSTEPS,batterycellproductiondiversifies,mainlyasaresultofinvestmentsinNorthAmericaandEurope,withproductionoutsideChinaaccountingforalmost40%ofthetotalby2035.IntheAPS,alongsidehigherglobaldemand,batterymanufacturingdiversifiesfurther,thankstomuchlargerproductionofbatteriesinEMDEsotherthanChina,particularlyinIndia,SoutheastAsiaandNorthAfrica,togetherwithgreaterEVandEVbatterymanufacturinginEurope.
TheincreaseinproductioninEMDEsotherthanChinaisenabledbyhigherdomesticandglobaldemand,combinedwithlowerproductioncostsandaccesstocriticalminerals,attractinglargermanufacturinginvestmentsintheseregions.Forexample,aboutUSD15billionin
investment
inbatteryandbatterycomponentproductionhasbeenannouncedinMoroccothankstoitslargephosphate
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
reserves,
3
lowlabourcostandpotentiallycheaprenewableelectricity,andfreetradeagreements(FTAs)withtheUnitedStatesandtheEuropeanUnion.IndonesiahassignedmorethanadozendealsworthoverUSD15billionfor
investments
inbatteriesandEVs,andrecently
inaugurated
itsfirstbatterycellproductionplant.Ifallannouncedinvestmentscometofruition,asreflectedintheAPS,IndonesiawouldbecomealargeEVandbatteryproducer.
Similarly,theproductionofcathodeandanodeactivematerialdiversifies,butthereisalargergapbetweentheSTEPSandAPScomparedtobatterycellproduction.IntheSTEPS,Chinaremainsbyfarthelargestproducer,withKoreaandSoutheastAsiatogetherrepresentingthesecondlargestsourceofproduction,accountingforover15%ofcathodeand5%ofanodeactivematerialproductionby2035.IntheAPS,greaterdiversificationisdrivenbylargerproductionintheEuropeanUnionandtheUnitedStates,butalso,importantly,bymuchlargerproductioninEMDEssuchasIndiaand,forcathodematerials,NorthAfrica,andCentralandSouthAmerica.
Batteries
Cathodes
Anodes
BatteryandselectedcomponentproductionbycountryorregionintheStatedPoliciesScenarioandAnnouncedPledgesScenario,2023-2035
0.85TWh
6.2TWh
10.1TWh
0.85TWh
6.2TWh
10.1TWh
0.89TWh
6.5TWh
10.7TWh
2023
2035STEPS
2035APS
ChinaAdvancedeconomiesaEMDEs(exc.China)
IEA.CCBY4.0.
Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;EMDEs(exc.China)=emergingmarketsanddevelopingeconomiesexcludingChina.BatteryreferstobatterycellsandincludesEVandbatterystorage.Anegative(anode)topositive(cathode)electroderatioof1.05isassumedforthefinalcells,whichimplies5%moreanodecapacitythancathodecapacitypercell.
Source:BasedonIEA(2024),
EnergyTechnologyPerspectives2024.
3Phosphateisakeycomponentoflithiumironphosphate(LFP)batteries.
IEA.CCBY4.0.
PAGE|10
EVBatterySupplyChainSustainabilityTheroleofbatteriesisexpectedtokeepgrowing
IEA.CCBY4.0.
PAGE|11
Manyofthe
minerals
neededtosatisfygrowingbatterydemandareextractedinEMDEs,suchaslithiuminSouthAmericancountries,nickelinIndonesia,andcobaltintheDemocraticRepublicofCongo.However,despitetheirexcellentmineralandrenewableresources,EMDEsotherthanChinaaccountforlessthan5%ofannouncedbatterymanufacturingcapacity.Thisunderlinesthesignificantindustrial
opportunity
forEMDEstoplayabiggerroleintheEVandbatterysupplychain.Ensuring
appropriate
environmental,socialandgovernance(ESG)standardswillbeanecessarypreconditionforsustainableindustrialdevelopmentprojects.
EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions
IEA.CCBY4.0.
PAGE|12
TheimpactofEVsandbatteriesonemissions
Electriccarsofferemissionsbenefitstoday,evenwhenconsideredonalifecyclebasis
Batteryelectricvehiclesareoftendescribedaszero-emissionsvehicles,thoughthisisonlytrueintermsofemissionswhilebeingdriven.Thereareemissionsassociatedwithvehicleandbatterymanufacturing,andwithproducingtheelectricityusedtorechargethevehicle.Electricandinternalcombustionenginevehicles(ICEVs)shouldbecomparedthroughlifecycleanalysis,whichincludestheemissionsassociatedwiththeproductionofthevehicle(andbattery)aswellasthewell-towheelemissions(i.e.well-to-tankandtank-to-wheelemissions).Underthislens,EVsremainlargelybeneficialcomparedtoICEVs,buttheextentoftheenvironmentalbenefitsdependsonregionalconditionssuchastheelectricitymix,drivinghabits,vehiclesizeandeventualbiofuelshare.
Forexample,asaglobalaverage,undercurrentpolicies,thelifecycleemissionsofamedium-sizebatteryelectriccarareabouthalfofthoseofanequivalentICEVthatisrunningonoil-basedfuels,morethan40%lowerthanforanequivalenthybridelectricvehicle(HEV),andabout30%lowerthanforaplug-inhybridelectricvehicle(PHEV)over15yearsofoperation,oraround200000km.TheenvironmentalgainofEVsisalsosettoincreaseovertimethankstothedecarbonisationofelectricitygrids.AselectricitygenerationdecarbonisesmorequicklyintheAPS,thesegapsincreasebyafurther3percentagepoints,withBEVlifecycleemissionsbeinglessthanhalfthoseofanICEV,45%lessthananHEV,andaboutathirdlessthanaPHEV.Whencomparingvehiclespurchasedin2035,asaglobalaverage,anICEVproducestwo-and-a-halftimestheemissionsofabatteryelectriccarintheSTEPS,andmorethanthreetimesasmanyintheAPS,overthevehiclelifetime.
EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions
IEA.CCBY4.0.
PAGE|13
Comparisonofglobalaveragemedium-sizedcarlifecycleemissionsbypowertrainintheStatedPoliciesScenarioandAnnouncedPledgesScenario,2023-2035
tCO2-eq/vehicle
50
40
30
20
10
0
ICEVHEVPHEVBEV
2023
ICEVHEVPHEVBEV
2035STEPS
ICEVHEVPHEVBEV
2035APS
CarproductionBatteryproductionTank-to-wheelWell-to-tankGriddecarbonisationimpact
IEA.CCBY4.0.
Notes:STEPS=StatedPoliciesScenario;APS=AnnouncedPledgesScenario;ICEV=internalcombustionengine
vehicle;HEV=hybridelectricvehicle;PHEV=plug-inhybridelectricvehicle;BEV=batteryelectricvehicle.“Grid
decarbonisationimpact”referstotheeffectofelectricityemissionsintensityimprovementsoverthelifetimeofthevehicle
(STEPSusedforvehiclessoldin2023).Theyears2023and2035refertothefirstyearofuseofthevehicle.PHEV
assumesanaverageutilityfactorof40%i.e.40%ofkilometrestravelledinfullelectricmodeonaverage.Theimpactof
biofuel
blendingisnotconsideredinthisanalysis.Forfurtherdetailsontheassumptionsbehindthislifecycleanalysis,
pleaseseeAnnexBofthe
GlobalEVOutlook2024.
TheimpactofvaryingassumptionsisavailableintheIEA
EVLife
CycleAssessment
Calculator.
Source:IEA(2024),
GlobalEVOutlook2024.
Vehiclesizeplaysanimportantroleindetermininglifecycleemissions.Today,manyconsumersarechoosinglargervehiclesthanpreviously,promptedinpartbymodelavailability.Thoughsmallervehiclesareclearlypreferableintermsofbothproductionandoperationemissionsacrosspowertrains,thegreaterefficiencyofanelectricpowertrainmeanselectrificationmitigatesmuchofthenegativeimpactoflargervehicles.WhilesomelargeICESUVscanemitupto50%moreemissionsthanamedium-sizedICEcar,alargebatteryelectricSUVemitsonlyaround20%morethanamedium-sizedbatteryelectriccaroveritslifetime.ChoosingabatteryelectricSUVoveranICESUVrepresentsalifecycleemissionsavingofabout60%.Evencomparedtoamedium-sizeICEV,abatteryelectricSUVresultsin40%lowerlifecycleemissions.
ThelifecycleemissionsbenefitsofBEVsvarybyregion,depending,inparticular,onthelocalgridemissionsintensity,averageannualdrivingdistance,andfueleconomyofICEvehicles.Forexample,inChileandtheUnitedKingdom,thelifecycleemissionsofamedium-sizeBEVpurchasedin2023aremorethan60%lowerthanthoseofanICEV.IntheUnitedKingdomthegapbetweenICEVsandBEVsisprimarilydrivenbytherelativelylowandrapidlydecreasingemissionsintensityofelectricitygeneration.InChile,thegapbetweenICEVandBEVlifecycleemissionsisdrivenbyrelativelypoorICEVfuelefficiencyaswellastherapiddecarbonisationofthepowergrid,withtheaverageemissionintensityofpower
EVBatterySupplyChainSustainabilityTheimpactofEVsandbatteriesonemissions
IEA.CCBY4.0.
PAGE|14
gridsfallingbyaround70%by2035intheSTEPS.WhileBEVscanoffersubstantialemissionreductionswhenreplacingICEVs,vehicleelectrificationisnottheonlystrategytoreduceroadtransportemissions;theuseofbiofuels,forexample,couldreducethelifecycleemissionsofICEVs.
Lifecycleemissionsofamedium-sizedcarbypowertrainrelativetoagasolineinternalcombustionenginecarbyregionintheStatedPoliciesScenario,2023
EmissionsrelativetoICEV
100%
80%
60%
40%
20%
0%
ChileChinaIndiaUnitedKingdom
ICEVHEVPHEVBEV
IEA.CCBY4.0.
Notes:ICEV=internalcombustionenginevehicle;HEV=hybridelectricvehicle;PHEV=plug-inhybridelectricvehicle;
BEV=batteryelectricvehicle.Theyear2023referstothefirstyearofuseofthev
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州财经职业学院《教师职业道德规范和政策法规》2023-2024学年第一学期期末试卷
- 2025陕西省建筑安全员C证考试题库
- 贵阳学院《数据库课程设计》2023-2024学年第一学期期末试卷
- 2025年河北省建筑安全员B证(项目经理)考试题库
- 广州幼儿师范高等专科学校《政府与非营利组织会计》2023-2024学年第一学期期末试卷
- 2025年-山西省安全员《C证》考试题库
- 广州医科大学《大学生职业生涯规划与就业指导(二)》2023-2024学年第一学期期末试卷
- 2025年福建省安全员B证考试题库附答案
- 2025陕西建筑安全员A证考试题库附答案
- 2025年上海市安全员-C证考试(专职安全员)题库及答案
- 中华传统文化之文学瑰宝学习通超星期末考试答案章节答案2024年
- 2023年外交学院招聘笔试备考试题及答案解析
- 机械制图-三视图
- GB/T 17516.1-1998V带和多楔带传动测定节面位置的动态试验方法第1部分:V带
- 供热公司热量管理办法
- 致客户通知函
- 各种预混料配方设计技术
- 12千伏环网柜(箱)标准化设计定制方案(2019版)
- 思想品德鉴定表(学生模板)
- 满堂支架计算
- MA5680T开局配置
评论
0/150
提交评论