版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届青海省海东市平安区第二中学高考冲刺模拟数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心为且和轴相切的圆的方程是()A. B.C. D.2.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()A. B.C. D.3.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.4.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列5.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.6.函数的部分图象如图所示,则()A.6 B.5 C.4 D.37.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.28.已知集合,,若,则实数的值可以为()A. B. C. D.9.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()变量x0123变量y35.57A.0.9 B.0.85 C.0.75 D.0.510.设a=log73,,c=30.7,则a,b,c的大小关系是()A. B. C. D.11.已知,则的值等于()A. B. C. D.12.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.14.若,则________,________.15.已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)16.(5分)已知函数,则不等式的解集为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.19.(12分)在数列中,,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值20.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.21.(12分)已知函数.(1)若关于的不等式的整数解有且仅有一个值,当时,求不等式的解集;(2)已知,若,使得成立,求实数的取值范围.22.(10分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.2、B【解析】
根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,,其图像关于直线对称,对满足的,,有,∴.再根据其图像关于直线对称,可得,.∴,∴.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.3、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.4、C【解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.5、C【解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.6、A【解析】
根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令=0,即=kπ,k=0时解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.7、A【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.8、D【解析】
由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.【点睛】考查描述法表示集合的定义,以及并集的定义及运算.9、A【解析】
计算,代入回归方程可得.【详解】由题意,,∴,解得.故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点.10、D【解析】
,,得解.【详解】,,,所以,故选D【点睛】比较不同数的大小,找中间量作比较是一种常见的方法.11、A【解析】
由余弦公式的二倍角可得,,再由诱导公式有,所以【详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题12、D【解析】
建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】
由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.14、【解析】
根据诱导公式和二倍角公式计算得到答案.【详解】,故.故答案为:;.【点睛】本题考查了诱导公式和二倍角公式,属于简单题.15、y=2x【解析】试题分析:当x>0时,-x<0,则f(-x)=ex-1+x.又因为f(x)为偶函数,所以f(x)=f(-x)=ex-1+x,所以f'【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当x>0时,函数y=f(x),则当x<0时,求函数的解析式”.有如下结论:若函数f(x)为偶函数,则当x<0时,函数的解析式为y=-f(x);若f(x)为奇函数,则函数的解析式为y=-f(-x).16、【解析】
易知函数的定义域为,且,则是上的偶函数.由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增.令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,则,解得,故不等式的解集为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据递推公式,用配凑法构造等比数列,求其通项公式,进而求出的通项公式;(2)求出数列的通项公式,利用错位相减法求数列的前项和.【详解】解:(1),,是首项为,公比为的等比数列.所以,.(2).【点睛】本题考查了由数列的递推公式求通项公式,错位相减法求数列的前n项和的问题,属于中档题.18、(1);(2).【解析】
(1)将函数的解析式表示为分段函数,然后分、、三段求解不等式,综合可得出不等式的解集;(2)求出函数的最大值,由题意得出,解此不等式即可得出实数的取值范围.【详解】.(1)当时,由,解得,此时;当时,由,解得,此时;当时,由,解得,此时.综上所述,不等式的解集;(2)当时,函数单调递增,则;当时,函数单调递减,则,即;当时,函数单调递减,则.综上所述,函数的最大值为,由题知,,解得.因此,实数的取值范围是.【点睛】本题考查含绝对值不等式的求解,同时也考查了绝对值不等式中的参数问题,考查分类讨论思想的应用,考查运算求解能力,属于中等题.19、(1);(2)【解析】
(1)由得,两式相减可得是从第二项开始的等比数列,由此即可求出答案;(2),分类讨论,当时,,作商法可得数列为递增数列,由此可得答案,【详解】解:(1)因为,,两式相减得:,即,是从第二项开始的等比数列,∵∴,则,;(2),当时,;当时,设递增,,所以实数的最小值.【点睛】本题主要考查地推数列的应用,属于中档题.20、(1)(2)【解析】
(1)由正弦定理将,转化,即,由余弦定理求得,再由平方关系得再求解.(2)由,得,结合再求解.【详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【点睛】本题考查正弦定理、余弦定理、三角形的面积公式,考查运算求解能力以及化归与转化思想,属于中档题.21、(1)(2)【解析】
(1)求解不等式,结合整数解有且仅有一个值,可得,分类讨论,求解不等式,即得解;(2)转化,使得成立为,利用不等式性质,求解二次函数最小值,代入解不等式即可.【详解】(1)不等式,即,所以,由,解得.因为,所以,当时,,不等式等价于或或即或或,故,故不等式的解集为.(2)因为,由,可得,又由,使得成立,则,解得或.故实数的取值范围为.【点睛】本题考查了绝对值不等式的求解和恒成立问题,考查了学生转化划归,分类讨论,数学运算的能力,属于中档题.22、(1)见解析(2)见解析【解析】
(1)连结OE,证明VA∥OE得到答案.(2)证明VO⊥BD,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西双版纳2024年云南西双版纳勐海县教体系统编外聘用人员招聘4人历年参考题库(频考版)含答案解析
- 2024-2025学年上海市黄浦区高三一模政治试卷(含答案)
- 第3单元 文明与家园(A卷·知识通关练)(原卷版)
- 6.1国家权力机关(解析版)
- 2025年江苏省新洋农场有限公司招聘笔试参考题库含答案解析
- 2025年福建南平政和县源鑫公司招聘笔试参考题库含答案解析
- 2025年云南中移铁通文山分公司招聘笔试参考题库含答案解析
- 2025年四川筠连县粮食购销公司招聘笔试参考题库含答案解析
- 2025年中国石油甘肃销售分公司招聘笔试参考题库含答案解析
- 二零二五年度办事处法律事务代理与咨询服务协议2篇
- 《低压电工技术》课程标准
- 22G101系列图集常用点全解读
- (国家基本公共卫生服务项目第三版)7高血压患者健康管理服务规范
- 12 富起来到强起来 精神文明新风尚(说课稿)-部编版道德与法治五年级下册
- (43)-7.2羊肚菌高效栽培
- 中级消防维保理论考试试题题库及答案
- 读书会熵减华为活力之源
- 竣工图绘制规范及标准
- 二年级上学期数学
- GB/T 37433-2019低功率燃油燃烧器通用技术要求
- GB/T 3098.5-2000紧固件机械性能自攻螺钉
评论
0/150
提交评论