北师大版八年级上册数学期末考试试卷含答案_第1页
北师大版八年级上册数学期末考试试卷含答案_第2页
北师大版八年级上册数学期末考试试卷含答案_第3页
北师大版八年级上册数学期末考试试卷含答案_第4页
北师大版八年级上册数学期末考试试卷含答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版八年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案)1.若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为A.(2,3) B.(3,2) C.(2,1) D.(3,3)2.把不等式组的解集表示在数轴上,正确的是()A. B.C. D.3.有若干只鸡和兔在同一笼子里,从上面数,有35个头,从下面数,有94只脚,问:笼子中各有多少只鸡和兔?若设有x只鸡、y只兔,则可列方程组为( )A.B.C.D.4.随着网络的发展,在节日期间长辈们往往用抢微信红包的形式发放红包,下表是某班42名同学在春节期间所抢的红包金额进行统计的结果表:金额(元)203050100200人数(人)5161065根据表中提供的信息,红包金额的众数和中位数分别是()A.16元,50元 B.30元,30元 C.30元,40元 D.30元,50元5.以下命题的逆命题为真命题的是()A.对顶角相等 B.如果a=0,b=0,那么ab=0C.若a>b,则a2>b2 D.同旁内角互补,两直线平行6.已知关于x,y的方程组的解为,则m,n的值为()A. B. C. D.7.如图,函数和的图象相交于A(m,3),则不等式的解集为()A. B. C. D.8.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E,若∠C=15°,EC=8,则△AEC的面积为()A.16 B.32 C.64 D.1289.关于x的不等式组有四个整数解,则a的取值范围是()A. B. C. D.10.如图,已知D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=9,BC=5,则CD的长为()A. B. C. D.11.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP,下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF;其中,正确的有()A.1个 B.2个 C.3个 D.4个12.两条直接与在同一坐标系中的图象可能是图中的()A.B.C.D.二、填空题13.已知一次函数,若y随x的增大而减小,则的取值范围是___.14.如图,在△ABC中,BC=BA,∠ABC=120°,BD⊥BC交AC于点D,BD=1,则AC的长为_________.15.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.16.如图,△ABC中,BC=10,AC−AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC的最大值为______.17.如图,已知AB∥CD,∠1=∠B,∠2=∠D,则∠BED=__________.三、解答题18.(1)解方程组(2)解不等式组,并写出不等式组的最大整数解.19.央视举办的《中国诗词大会》受到广泛的关注.深圳某中学学生就《中国诗词大会》节目的喜爱程度,在校内进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A.B.C.

D;根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有___人;被调查者“不太喜欢”有___人;(2)将扇形统计图和条形统计图补充完整;(3)深圳某中学南校区约有5000学生,请据此估计“比较喜欢”的学生有多少人?20.如图,直线MN分别与直线AC、DG交于点B.

F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.21.如图,直线y=kx+3与x轴、y轴分别相交于E,F.点E的坐标为(−6,0),点P是直线EF上的一点.(1)求k的值;(2)若△POE的面积为6,求点P的坐标.22.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值23.如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.24.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.参考答案1.B【分析】由(1,2)表示教室里第1列第2排的位置可知,第一个数字表示列,第二个数字表示排,由此即可解决问题.【详解】解:类比(1,2)表示教室里第1列第2排的位置,可知教室里第3列第2排的位置表示为(3,2).故选B.【点睛】本题考查了坐标确定位置,读懂题目信息,理解两个数的实际意义是解题的关键.2.C【分析】先定界点,再定方向即可得.【详解】不等式组的解集在数轴上表示如下:故选:C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点;二是定方向,注意“实心点”、“空心点”的用法.3.B【分析】根据等量关系:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,可列出方程组.【详解】∵鸡有2只脚,兔有4只脚,

∴可列方程组为:.

故选:B.【点睛】本题考查了二元一次方程组的应用-鸡兔同笼问题,解决本题的关键是根据鸡和兔的总只数,鸡和兔的总足数得到相应的等量关系.4.C【分析】根据众数与中位数的定义,众数是这组数中出现次数最多的数,而中位数则是处在最中间位置的数,即可解答.【详解】30出现次数最多,出现了16次,所以众数为30,按从小到大的顺序排列,第21、22个数是30和50,所以中位数为:.故选:C【点睛】本题考查了众数和中位数的概念.解答这类题学生常常对中位数的计算方法掌握不好而错选.5.D【分析】先求出各个命题的逆命题,再判断真假.【详解】A.对顶角相等的逆命题是:相等的角是对顶角,不正确,相等的角不一定是对顶角;B.如果a=0,b=0,那么ab=0的逆命题是:如果ab=0,那么a=0,b=0,不正确,如果ab=0,那么a=0或b=0;C.若a>b,则a2>b2的逆命题是:若a2>b2,则a>b,不正确,反例:,

有a2>b2,但.D.同旁内角互补,两直线平行的逆命题是:两直线平行,同旁内角互补,正确,逆命题符合平行线的判定;【点睛】本题考查命题的真假判断,逆命题的概念.关键先找出逆命题,再进行判断.6.A【解析】【分析】将代入方程组,再解方程组可得.【详解】将代入方程组中得:,

解得:.故选A【点睛】本题主要考查二元一次方程组的解法.7.C【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=.∴点A的坐标是(,3).∵当时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为.故选C.8.A【分析】根据垂直平分线的性质和三角形外角定理得到∠1=30,再利用角所对直角边等于斜边一半求得,然后用三角形面积公式即可求得答案.【详解】∵ED是AC的垂直平分线,∠C=15°,

∴EA=EC,∴∠EAC=∠C,

∴∠1=2∠C=30,

在中,EA=EC=8,∠1=30,

∴,

∴,

故选:A.【点睛】此题主要考查线段的垂直平分线的性质,三角形外角定理,角所对直角边等于斜边一半,三角形面积公式等几何知识.要理解线段的垂直平分线上的点到线段的两个端点的距离相等,得到并应用是正确解答本题的关键.9.B【分析】解不等式组求出不等式组的解集,再根据解集求的取值范围【详解】解得:,解得:,∴不等式组的解集是:,∵不等式组有四个整数解,即:9、10、11、12,∴解得:解得:∴解集为:故选:B【点睛】本题考查的是一元一次不等式组的解法,正确解出不等式组的解集,确定的范围,是解决本题的关键.10.C【分析】延长BD与AC交于点E,由题意可推出,依据CD平分∠ACB,BD⊥CD,即可得等腰三角形BCE,可推出根据,即可推出的长度,继而求得答案.【详解】延长BD与AC交于点E,

∵∠A=∠ABD,

∴BE=AE,

∵BD⊥CD,即BE⊥CD,

又∵CD平分∠ACB,

∴∠BCD=∠ECD,

∴∠EBC=∠BEC,

∴△BEC为等腰三角形,

∴BC=CE,

∵BE⊥CD,

∴2BD=BE,

∵AC=9,BC=5,

∴CE=5,

∴AE=AC-EC=9-5=4,

∴BE=4,

∴BD=2.

在Rt△CBD中,BC=5,BD=2,∴故选:C.【点睛】本题主要考查等腰三角形的判定与性质,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.11.D【分析】①分别用外角减去内角表示∠ACB和∠APB,即可得到结论;

②根据角平分线的性质和三角形的面积公式即可求出结论;

③根据线段垂直平分线的性质即可得结果;

④根据角平分线的性质和平行线的性质即可得到结果.【详解】①∠ACB=∠CBE-∠CAB=2∠PBE-2∠PAB=2(∠PBE-∠PAB)=2∠APB.②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB,③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,又∵PG∥AD,∴∠FPC=∠DCP,故①②③④都正确.故答案选:D.【点睛】本题考查了角平分线与平行线的性质,解题的关键是熟练的掌握角平分线与平行线的性质.12.B【分析】利用一次函数的图象性质依次判断可求解.【详解】解:A:直线y1过第一、二、三象限,则a>0,b<0,直线y2过第一、二、四象限,则b<0,a<0,前后矛盾,故A选项错误;B:直线y1过第一、二、三象限,则a>0,b<0,直线y2过第二、三、四象限,则b<0,a>0,故B选项正确;C:直线y1过第一、三、四象限,则a>0,b>0,直线y2过第一、二、四象限,则b<0,a<0,前后矛盾,故C选项错误;D:直线y1过第一、三、四象限,则a>0,b>0,直线y2过第二、三、四象限,则b<0,a>0,前后矛盾,故D选项错误;故选:B.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.13.k<1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,

∴k-1<0,

解得k<1,

故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.14.3【分析】由BC=BA,∠ABC=120°,求得∠A=∠C=30,由BD⊥BC,求得的长,从而得到答案.【详解】∵BC=BA,∠ABC=120°,

∴∠A=∠C=30,∴AD=BD=1∵BD⊥BC,∠C=30,∴CD=2BD=2∴AC=AD+DC=1+2=3故答案为:3【点睛】本题考查了等腰三角形的判定和性质,角所对直角边等于斜边一半.15.3.6【详解】分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.详解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h4.5×6+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.16.10【分析】延长AB,CD交点于E,可证△ADE≌△ADC(ASA),得出AC=AE,DE=CD,则S△BDC=S△BCE,当BE⊥BC时,S△BEC最大面积为20,即S△BDC最大面积为10.【详解】如图:延长AB,CD交点于E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC面积最大,即S△BDC最大面积=××10×4=10.故答案为:10.【点睛】本题考查了等腰三角形的性质、角平分线定义、全等三角形的判定与性质等知识;利用三角形中线的性质得到S△BDC=S△BEC是解题的关键.17.90°【详解】解:∵AB∥CD,∴∠A+∠C=180°,∵∠A+∠1+∠B=180°,∠C+∠2+∠D=180°,∴∠1+∠B+∠2+∠D=180°,∵∠1=∠B,∠2=∠D,<BR>∴∠1+∠2=90°,∴∠BED=180°-(∠1+∠2)=180°-90°=90°.故答案为90°.点睛:本题考查的是平行线的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.18.(1);(2),最大整数解为2.【分析】(1)可用代入法,达到消元的目的;(2)先求出每个不等式的解集,再取它们的公共部分,确定不等式组的解集,从而求出不等式组的最大整数解【详解】(1)由①得:③则②得:④将③代入④得:解得:,将代入③得:;故方程组的解为:(2)由①解得:由②得:,化简得:解得:∴不等式组的解集为:故最大整数解为:2【点睛】本题考查二元一次方程组的解法和一元一次不等式组解集的求法.掌握不等式组解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(1)50;5;(2)扇形统计图和条形统计图补充完整图见解析;(3)估计“比较喜欢”的学生有2000人.【分析】(1)根据等级A的人数除以占的百分比求出调查的学生数,进而确定等级D的人数即可;(2)求出等级B与C占的百分比,以及等级C与D的人数,补全统计图即可;(3)用总人数乘以“比较喜欢”等级的占比,即可求得.【详解】(1)根据题意得:15÷30%=50(人),等级D的人数为50×10%=5(人),则本次被调查的学生共有50人;在被调查者中“不太喜欢”的有5人;故答案为:50;5;(2)B所占的百分比是:,

C所占的百分比是:,

选C的学生有:50×20%=10(人),

选D的有5人,

补全的统计图如图所示,(3)估计“比较喜欢”的学生有:(人)故答案为:估计“比较喜欢”的学生有2000人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.(1)证明见解析;(2)145°.【分析】(1)根据对顶角的定义和角平分线性质结合平行线的判定定理可证得结论;(2)根据对顶角的定义结合平行线的判定定理可证得AC∥DG,结合(1)的结论,可证得为平行四边形,利用邻补角的定义即可求得结论.【详解】(1)∵,且BE平分,∴,∵,且CF平分,∴,∵∠1=∠2,∴∴BE∥CF;(2)∵,,且∠1=∠2,∴∴AC∥DG,又∵BE∥CF∴四边形为平行四边形,∴,∵∴【点睛】本题主要考查了平行线的判定定理,还考查了对顶角、角平分线、邻补角的概念以及平行四边形的判定和性质,熟练掌握平行线的判定定理是解题的关键.21.(1)k=;(2)P(,2)或(,-2)【分析】(1)把点E(−6,0)代入y=kx+3,即可得到结果;(2)由(1)的结果知直线的解析式为y=x+3,设点P的坐标为(a,),根据三角形的面积公式即可求得结果.【详解】(1)∵直线y=kx+3经过点E(−6,0)∴,解得:;(2)由(1)∴直线的解析式为y=x+3,设点P的坐标为(,),∵OE=6∴化简得:即:解得:或∴点P的坐标为:()或()【点睛】本题考查了一次函数综合题.其中涉及到的知识点有:一次函数图象上点的坐标特征,待定系数法求一次函数的解析式,三角形的面积公式等,利用三角形的面积公式构建方程是解题的关键.22.(1)甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2)共有四种方案;(3)当m=80时,w始终等于8000,取值与a无关【分析】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;【详解】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,,解得,(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a为自然数,∴有a为7、8、9、10共四种方案,(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,当m=80时,w始终等于8000,取值与a无关.【点睛】本题考查了列二元一次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论