初一数学《代数式》知识点精讲_第1页
初一数学《代数式》知识点精讲_第2页
初一数学《代数式》知识点精讲_第3页
初一数学《代数式》知识点精讲_第4页
初一数学《代数式》知识点精讲_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

\o"点击文章标题可访问原文章链接"\o"点击文章标题可访问原文章链接"初一数学《代数式》知识点精讲知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:

1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;

2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a

应写成2a(a+b);

3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;

4.在代数式中出现除法运算时,按分数的写法来写;

5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

六、系数与次数

单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:(1)单项式的系数包括它前面的符号;

(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。

注意:(1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;

(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。

3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数.

4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。

八、列代数式:用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。

正确列出代数式,要掌握以下几点:(1)列代数式的关键是理解和找出问题中的数量关系;(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。

九、代数式求值:一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。

代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。常见考法

列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。误区提醒

(1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。(3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数……表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。零的相反数是零。【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。【倒数】1除以一个非零实数的商叫这个实数的倒数。零没有倒数。【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。【开方】求一数的方根的运算叫做开方。【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。代数式的分类【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式。【无理式】根号下含有字母的代数式叫做无理式。【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式。【分式】除式中含字母的有理式叫分式。★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。整式和分式统称为有理式。2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。有除法运算并且除式中含有字母的有理式叫做分式。3.单项式与多项式没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,=x,=│x│等。4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。含有关于字母开方运算的代数式叫做无理式。注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。7.算术平方根⑴正数a的正的平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。把分母中的根号划去叫做分母有理化。9.指数⑴(—幂,乘方运算)①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)⑵零指数:=1(a≠0)负整指数:=1/(a≠0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:=(m≠0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:①·=;②÷=;③=;④=;⑤技巧:5.乘法法则:⑴单×单;⑵单×多;⑶多×多。6.乘法公式:(正、逆用)(a+b)(a-b)=(a±b)=7.除法法则:⑴单÷单;⑵多÷单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论