版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第___周第___课时上课时间____月____日星期___累计教案___个课题4.1抽样教学目标1、通过丰富的实例,感受抽样的必要性,了解总体、个体、样本等概念,体会不同的抽样可能得到不同的结果。2、从一个学生比较熟悉的调查问题提出抽样的概念,并通过“做一做”及“合作学习”让学生进一步体验抽样的必要性,另一方面也是让学生从中去体验抽样中会遇到的问题和基本要求,并根据要求编制简单的柚样方案。3、从学生的生活实际提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,有利于学生养成关注身边的事例、关注社会问题,培养一种社会的责任感。.教学重点抽样的概念和抽样的必要性教学难点本节中的“合作学习”情景比较复杂,学生缺乏抽样的经验是本节教学的难点。教法与学法讲解、举例教学准备幻灯片板书设计教学过程设计教学随笔一、创设情境,引入新知1、提出问题要了解全国初中生的视力情况,有人设计了下三种调查方法:对全国所有的初中生进行视力测试。对某一所著名中学的初中生进行视力测试。在全国按东、西、南、北、中分片,每个区域各抽3所中学,对这15所中学的全部初中进行视力测试。你认为采用哪一种调查方法比较合适?学生通过思考比较并结合自身的体验经历,不难回答以上问题。对全国所有的初中生进行视力测试属于普查,工作量太大,没有必要。对某一所著名中学的初中生进行视力测试,这种方法缺乏普遍性,不合适。在全国按东、西、南、北、中分片,每个区域各抽3所中学,对这15所中学的全部初中进行视力测试,这种调查具有可操作性及代表性。方法(3)比较合适。教师应给学生独立思考的空间并让学生充分发表自己的意见,只要合理都予以肯定。然后指出抽出一部分对象作调查分析(揭示课题)——抽样。二、师生互动,探索新知1、归纳概括抽样的概念。(请学生归纳,教师补充)人们在研究某个自然现象或社会现象时,往往会遇到不方便、不可能或不必要对所有的对象作调查的情况,于是从中抽取一部分对象作调查,这就是抽样。因此,引导归纳调查的两种方法。1、普查即全面调查,如人囗普查的方法。2、抽样调查即部分调查,当遇到不方便、不可能或不必要对所有的对象作调查分析时,采用抽样的方法。做一做1、某机构要调查一手机生产厂家的手机质量,是否需要把该厂生产的手机进行检测?2、要了解初中生有多少学生知道父母的生日,有没有必要对你校初中各年级所有同学进行调查?有没有必要对全国初中学生进行调查?如需要用抽样的方法,请设计一个抽样方案。问题1、不需要,只需抽样。问题2对一所学校一个年级所有同学进行调查缺乏普遍性,不可取,对全国初中学生进行调查即普查,工作量太大,没有必要。应采取抽样调查,例如在全国按东、西、南、北、中分片,每个区域各抽3所中学,对这15所中学的全部初中进行调查。2、归纳概括抽样的优缺点。议一议:温州电视台需要在我区调查“温州新闻”的收视率(1)每个看电视的人都要被问到吗?(2)对一所中学学生的调查结果能否作为该节目的收视率?(3)你认为对不同社区、年龄层次、文化背景的人所做调查的结果会一样吗?抽样调查方法只考察一部分对象,所以它具有调查的范围小,节省时间、人力、物力的优点.缺点是不如普查得到的调查结果精确,它得到的只是估计值,而这个估计值是否接近实际情况,还取决于对象选得是否具有代表性。3、统计学中的基本概念在抽样调查中,我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察的对象叫做个体,从总体中取出的一部分个体的集体叫做这个总体的一个样本,样本中的个体的数目叫做样本的容量。通过下面两个例题,弄清总体、个体、样本、样本容量的概念。(1)调查某县农民家庭情况时,从中取出1000名农民进行统计。(2)为检测一批日光灯的寿命,从中抽样检测50个是日光灯的寿命。如果要考察的对象内容比较笼统时,样本通常指的是人和物。因此,该县的全体农民是总体,每一个农民就是个体。从中取出1000名农民集体是总体的一个样本。样本容量是1000。如果要考察的对象内容是某一方面的特性时,这些特性常常以数据的形式呈现出来。这批日光灯的寿命的全体是总体,个体是每支日光灯的寿命,样本是指抽取的各支日光灯的寿命的集体。三、合作交流,共同提高合作学习某地区今年约有10000名学生参加初中毕业升学考试。为了解数学考试成绩,从中取出的1000份学生的答卷来统计合格率、优秀率和平均分,问应怎样抽取1000份答卷,使所了解的数据具有代表性?已知有关信息如下:抽样在卷头拆封进行(即看不见考生的姓名、所在学校、准考证号码等)每个考场有25名考生,每个考场考生的答卷装订成一叠,包装袋上写有考场编号。参加考试的同一所学校的学生的各个考场连续编号。在合作学习之前,先对全班进行分组,一般四人一组较为方便,教师要组织好下面四步:第一步先让学生独立思考,尝试解决问题,同时弄清提供的有关信息,(1)表明不能按所在学校、准考证号码抽样;(2)表明考场约10000÷25=400个,即抽1000份学生的答卷也就是从400袋试卷中抽取40袋答卷,(3)说明抽取40袋试卷时,不能根据试卷的序号连续抽取;这些信息对有此同学教师要给与必要的提示与辅导。第二步让事先组织好小组内部交流抽样最佳方案,教师巡视与各组交流情况。主要抽样时即要抽足40袋答卷,又要使抽取的样本具有代表性、随机性,使得抽得的样本具有普遍意义。第三步以小组为单位展示不同的讨论结论。学生自由发言评价。第四步教师简要小结和点评,肯定对的,指出不足,适当讲解,并进行相应的奖励。课内练习:要估计山西交口县新庄村“百里蝶群”中大约有多少只蝴蝶,你会采取什么方法?提示:可在50千米蝴蝶集中的沿线上设50个点,在每个点设观察者,每个观察者统计本点前后100米的大约蝴蝶数。求出50个点观察者沿线每200米的平均数,乘以50,得蝴蝶总数的估计值。(答案不唯一)四、梳理知识,归纳小结。请学生谈自己学习了本节课的收获。在交流中师生可共同梳理知识点:(1)认识抽样调查及抽样必要性;(2)了解总体、个体、样本、样本容量等概念。(3)会根据要求编制简单的抽样方案。通过这个环节,一方面使教师了解到学生的学习情况,对知识的理解程度,另一方面通过学生谈收获也对本节知识重新进行了一次回顾,学生在相互交流中相互促进。五、分层作业,巩固应用分层次布置作业:作业题:1、2、3必做;作业题:4、5选做。第___周第___课时上课时间____月____日星期___累计教案___个课题4.2平均数教学目标1、理解平均数的概念,会计算平均数.2、了解加权平均数,会计算加权平均数.3、会用样本的平均数来估计总体的平均数.教学重点本节教学的重点是平均数的计算(包括加权平均数).教学难点例2的问题情境比较复杂,还涉及加权平均数的计算是本节教学难点.教法与学法讲解、举例教学准备幻灯片板书设计教学过程设计教学随笔一、创设情境,提出问题.出示课件:播放水果在收获前,果农常会先估计果园里果树的产量,你认为应该怎样估计呢?二、启发诱导,探索新知.1、合作学习某果农种植的100棵苹果树即将收获.果品公司在付给果农定金前,需要对这些果树的苹果总产量进行估计.(1)果农任意摘下20个苹果,称得这20个苹果的总质量为4千克.这20个苹果的平均质量是多少千克?(2)果农从100棵苹果树中任意选出10棵,数出这10棵苹果树上的苹果数,得到以下数据(单位:个):154,150,155,155,159,150,152,155,153,157.你能估计出平均每棵树的苹果个数吗?(3)根据上述两个问题,你能估计出这100棵苹果树的苹果总产量吗?2、引出平均数的概念,平均数用符号表示,读做“拔”,计算平均数公式=(…+)指出:在实践中,常用样本的平均数来估计总体的平均数.例如,在上面的例子中,用20个苹果的平均质量0.2千克来估计100棵苹果树上苹果的平均质量,用10棵树的平均苹果个数154个来估计100棵树的平均苹果个数.3、做一做三、学以以致用,体验成功.1、讲解例1方法(一):直接根据平均数的意义来计算,这里的,,…指的是什么?等于多少?方法(二):15个数据中有几个6,几个7,几个8,几个9,几个10?=15与这些相同数的个数之间有什么关系?所求的平均数的算式还可以写成怎样的算式?2、由上例中的方法(二)概括出加权平均数的概念和权的意义3、讲解例2分析:第(1)题只需求一般的平均数,学生容易理解.第(2)题涉及加权平均数,不妨以801班为例,表中相应的3个数据为=80,=84,=87,给定三个项目的权的比为15:35:50,即表示::=15:35:50,因此可设=15,=35,=50(>0),求出加权平均数4、课本课内练习第1,2四、总结回顾,反思内化.通过这节课的学习,你有什么收获?1、知识小结,这节课我们学习了平均数、加权平均数的概念,会计算平均数和加权平均数.2、会用样本的平均数来估计总体的平均数.五、作业1、课本作业题1,2,3,4,5,6必做.2、见作业本第___周第___课时上课时间____月____日星期___累计教案___个课题4.4方差和标准差教学目标1、了解方差、标准差的概念.2、会求一组数据的方差、标准差,并会用他们表示数据的离散程度.3、能用样本的方差来估计总体的方差.4、通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.教学重点本节教学的重点是方差的概念和计算。教学难点方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点.教法与学法讲解教学准备幻灯片板书设计教学过程设计教学随笔一、创设情景,提出问题甲、乙两名射击手的测试成绩统计如下表:第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068①请分别算出甲、乙两名射击手的平均成绩;②请根据这两名射击手的成绩在图中画出折线图;二、合作交流,感知问题请根据统计图,思考问题:①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较,哪一个偏离程度较低?②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?④、是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?⑤、数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据的偏离平均数的程度,应如何比较?三、概括总结,得出概念根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法、及用方差来判断数据的稳定性。方差的单位和数据的单位不统一,引出标准差的概念。(注意:在比较两组数据特征时,应取相同的样本容量,计算过程可借助计数器)现要挑选一名射击手参加比赛,你认为挑选哪一位比较适宜?为什么?(这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论)四、应用概念,巩固新知1、已知某样本的方差是4,则这个样本的标准差是_________。2、已知一个样本1,3,2,X,5,其平均数是3,则这个样本的标准差是______。3、甲、乙两名战士在射击训练中,打靶的次数相同,且中环的平均数X甲=X乙,如果甲的射击成绩比较稳定,那么方差的大小关系是S2甲_____S2乙4、八年级(5)班要从黎明和张军两位侯选人中选出一人去参加学科竞赛,他们在平时的5次测试中成绩如下(单位:分)黎明:652653654652654张军:667662653640643如果你是班主任,在收集了上述数据后,你将利用哪些统计的知识来决定这一个名额?(解题步骤:先求平均数,再求方差,然后判断得出结论)五、通过探究,找出规律已知两组数据1,2,3,4,5和101,102,103,104,105。求这两组数据的平均数、方差和标准差。将这两组数据画成折线图,并用一条平行于横轴的直线来表示这两组数据的平均数,观察你画的两个图形,你发现了哪些有趣的结论?六、小结回顾,反思提高这节课我们学习了方差、标准差的概念,方差的实质是各数据与平均数的差的平方的平均数。方差越大,说明数据的波动越大,越不稳定。标准差是方差的一个派生概念,它的优点是单位和样本的数据单位保持一致,给计算和研究带来方便。利用方差比较数据波动大小的方法和步骤:先求平均数,再求方差,然后判断得出结论。六、巩固练习,反馈信息1、课本“课内练习”第1题和第2题。2、课本“作业题”第3题。3、见作业本第___周第___课时上课时间____月____日星期___累计教案___个课题4.5统计量的选择和应用教学目标1、会根据反映数据的集中程度、离散程度的不同需要选择合适的统计量.2、初步会根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流教学重点根据反映数据的集中程度,离散程度的不同需要选择合适的统计量.教学难点例1教学过程.教法与学法比较、讲解教学准备幻灯片板书设计教学过程设计教学随笔一、知识回顾以前学习的统计量有平均数、中位数、众数、方差、标准差。平均数、中位数、众数是描述一组数据集中的统计量,方差、标准差是描述一组数据离散程度的统计量。在实际生活中,我们不仅关注数据的集中程度,也关注数据的离散程度,但反映集中程度的三个统计量也有局限性,如平均数容易受极端值的影响,中位数不能充分利用全部数据信息。当一组数据出现多个众数时,这时众数就没有多大的意义。二、例题讲解,知识应用1、例1下列各个判断或做法正确吗?请说明理由。(1)篮球场上10人的平均年龄是18岁,有人说这一定是一群高中生(或大学生)在打球。(2)某柜台有A、B、C、D、E五种品牌的同一商品,按销售价格排列顺序为A、B、C、D、E,经过市场调查发现,对该商品消费的平均水平与C品牌的价格相同,所以柜台老板到批发部大量购进C品牌。分析:(1)平均年龄18岁并不一定人人都18岁左右,也可能是几个年龄教大的带着几个年龄教小的在一起打球。(2)平均消费水平与C品牌的价格相同,并不代表消费者都喜欢购买品牌,比如消费者大量购买了B、D品牌后,其平均消费水平有可能与C品牌的价格相同,但在消费者心目中,C品牌并不是首选商品。解:(1)错,比如2名30岁的老师带着8名15岁的初中生在一起打球。(2)错,好比消费者在分别大量购买了价格比C品牌高和比C品牌低的其他商品后,其平均消费水平也有可能和C品牌的价格相当。注:(1)中最好利用平均数、中位数和众数一起判断更为精确;(2)中进货的依据应该是众数,而不是平均数。2、例题解析(91页例一)分布讨论:(1)确定定额时,如果定额太高或太低,会带来什么后果?定额太低,不利于提高效率,定额太高,不利于提高积极性。(2)算出15名工人这一天生产的机器零件的平均个数,如果以这个平均数作为定额,那么有多少工人完不成定额?把平均数作为定额合适吗?以平均数10作为定额,那么将有8名工人可能完不成任务。(3)再求出众数、中位数,若将中位数、众数作为定额,与平均数做定额相比较,你认为哪个更适应?工人生产零件个数的中位数是9个,如果以中位数9作为定额,那么可能有7名工人完不成任务。工人生产零件个数的众数是8个,如果以众数8作为定额,那么大多数工人都能完成或超额完成任务,有利于调动工人的积极性。因此把定额定为8个。小结:在根据判断决策的需要选择应用统计量时,首先应确定知道的是数据的集中程度,还是数据的离散程度。3、讲解93页作业题1从平均数来看,甲组学生成绩比乙组学生成绩好。4、讲解92页例二当平均数相等时,看方差大小,方差小的说明波动小,稳定性强。三、知识巩固练习:93页课内练习、94页作业题3四、小结还是两者都需要,若要知道数据的集中程度,则应求数据的平均数、中位数和众数。如书例1:若要知道数据的离散程度,则应求数据的方差或标准差,如书例2。五、作业见作业本第___周第___课时上课时间____月____日星期___累计教案___个课题第四章复习教学目标1、总体、个体、样本及样本容量的应用2、平均数、中位数、众数的计算3、平均数、中位数、众数的应用4、方差、标准差的计算5、方差、标准差的应用教学重点平均数、中位数、众数的计算方差、标准差的计算教学难点平均数、中位数、众数的应用方差、标准差的应用教法与学法讲解教学准备幻灯片板书设计教学过程设计教学随笔专题一总体、个体、样本及样本容量的应用例1、我市去年参加某次数学考试的人数为45368名,为了了解考生数学成绩情况,从中抽取了500名考生的数学成绩进行统计分析。在这个问题中,总体、个体、样本和样本容量各是多少?点拨:解决此题,只要熟知总体、个体、样本和样本容量的概念即可。解答:总体是所有考生数学成绩的全体,个体是每个考生的数学成绩,样本是被抽到的那500名考生的数学成绩的集体,样本容量为500。总结:对于本题的概念较多,要熟知总体、个体、样本和样本容量的概念的内涵。另外,如果要考察的对象内容比较笼统时,样本通常指的是人和物;如果要考察的对象内容是某一方面的特性时,这些特性常常以数据的形式呈现出来。随堂变式:1、调查某县农民家庭情况时,从中取出1000名农民进行统计,在这个问题中,总体是______;个体是______;总体的一个样本是________;样本容量是________2.为检测一批日光灯的寿命,从中抽样检测50个是日光灯的寿命。总体是____;个体是_______;总体的一个样本是;样本容量是___________。专题二平均数、中位数、众数的计算例2求下面一组数据的平均数、中位数、众数。10,20,80,40,30,90,50,40,50,40。点拨:根据数据的不同,选择运用需要的公式(如算术平均数或加权平均数、找基准求平均数等)去求平均数,求中位数时,一定要将数据按顺序(从大到小或从小到大)进行排列后再计算。而众数,只需找出次数出现最多的数据。解答:将这一组数据按从小到大的顺序排列后为:10,20,30,40,40,40,50,50,80,90。第5个数与第6个数的平均数为,即中位数为40。在这组数据中,出现次数最多的是40,所以众数是40。平均数为45,中位数为40,众数为40。总结:平均数、中位数、众数从不同的侧面反映了一组数据的特征。平均数能充分利用数据信息,所有数据都参加运算,但很容易受极端值的影响;中位数计算简单,只与数据的位置有关,但不能充分利用和反映所有的数据信息;众数计算简单,只与数据重复的次数有关,但不能充分利用和反映所有的数据信息,且可能不唯一,当各数据的重复次数大致相等时,众数往往没有特别的意义。随堂变式:公园里有甲、乙两组游客正在做团体游戏,两组游客的年龄如下:(单位:岁)甲组:13,13,14,15,15,15,15,16,17,17;乙组:3,4,4,5,5,6,6,6,54,57;回答下列问题:(1)甲组游客的平均年龄是岁,中位数是岁,众数是岁,其中较好地反映甲组游客年龄特征的是;(2)乙组游客的平均年龄是岁,中位数是岁,众数是岁,其中较好地反映乙组游客年龄特征的是;解答:(1)15,15,15。平均数、众数和中位数(2)15,5.5,6。中位数和众数专题三平均数、中位数、众数的应用例3某公司销售部有营销人员15人,销售部为了制定某种商品的月销售额,统计了者15人某月的销售量如下:每人销售件数180510250210150120人数113532(1)求者15人营销人员该月销售量的平均数、中位数和众数;(2)假设销售部负责人把每位营销人员的月销售量定320件,你认为是否合理,为什么?如果不合理,请你制定一个较合理的销售定额,并说明理由。点拨:(1)平均数可用加权平均数方法求。(2)对平均数、中位数和众数进行综合分析后才可以制定合理的销售定额。解答:(1)平均数(件)而中位数为210件,众数为210件。所以平均数为320件,中位数为210件,众数为210件。(2)不合理。如果把每位营销人员的月销售量定320
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 好久都没看到合同了的说说
- 提取公积金还房贷备案合同
- 《气瓶的基础知识》课件
- 2025年武汉货运从业资格试题及答案
- 2025年广东货运从业资格证模拟试题及答案大全
- 2025年钦州货运资格证考试题答案
- 2025年西藏货运从业资格考试模拟考试题及答案详解
- 2025年巴彦淖尔货运从业资格证考试技巧
- 工程安全电力施工合同范本
- 住宅小区高速电梯施工协议
- 河南省焦作市2023-2024学年七年级上学期期末语文试题
- MOOC 技术经济学-西安建筑科技大学 中国大学慕课答案
- 人教版一年级上册数学专项练习-计算题50道含答案(综合卷)
- 高水平行业特色型大学核心竞争力评价与培育研究的开题报告
- 2024年中国消防救援学院招聘笔试参考题库附带答案详解
- 2024年江西富达盐化有限公司招聘笔试参考题库附带答案详解
- 学前教育就业指导
- 2024电化学储能考试题库含答案
- 教师教学创新团队工作总结
- 铸牢中华民族共同体意识-考试复习题库(含答案)
- 2024年6月广东省高中学业水平考试物理试卷(附答案)
评论
0/150
提交评论