2025届广东省师大附中高考数学二模试卷含解析_第1页
2025届广东省师大附中高考数学二模试卷含解析_第2页
2025届广东省师大附中高考数学二模试卷含解析_第3页
2025届广东省师大附中高考数学二模试卷含解析_第4页
2025届广东省师大附中高考数学二模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省师大附中高考数学二模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为A. B. C. D.2.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.3.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲4.已知定义在上的函数,,,,则,,的大小关系为()A. B. C. D.5.在中,角所对的边分别为,已知,则()A.或 B. C. D.或6.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.7.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.18.设为等差数列的前项和,若,,则的最小值为()A. B. C. D.9.若实数、满足,则的最小值是()A. B. C. D.10.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.11.点为的三条中线的交点,且,,则的值为()A. B. C. D.12.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_______.14.设函数,若在上的最大值为,则________.15.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.16.若双曲线的离心率为,则双曲线的渐近线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.18.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.19.(12分)在四棱锥中,底面为直角梯形,,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.20.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.21.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.22.(10分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.2、B【解析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.3、D【解析】

根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【点睛】本小题主要考查图表分析和数据处理,属于基础题.4、D【解析】

先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.5、D【解析】

根据正弦定理得到,化简得到答案.【详解】由,得,∴,∴或,∴或.故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.6、A【解析】

对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.7、B【解析】

根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.8、C【解析】

根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.【详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.9、D【解析】

根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.10、D【解析】

利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.11、B【解析】

可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.12、D【解析】

根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【点睛】本题考查了折线图,意在考查学生的理解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024,n=5,故的展开式的通项公式为Tr+1=C·35-r,令,解得r=4,可得常数项为T5=C·3=15,故填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.14、【解析】

求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【详解】解:定义域为,在上单调递增,故在上的最大值为故答案为:【点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.15、【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.16、【解析】

利用,得到的关系式,然后代入双曲线的渐近线方程即可求解.【详解】因为双曲线的离心率为,所以,即,因为双曲线的渐近线方程为,所以双曲线的渐近线方程为.故答案为:【点睛】本题考查双曲线的几何性质;考查运算求解能力;熟练掌握双曲线的几何性质是求解本题的关键;属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线过定点,该定点的坐标为.【解析】

(1)因为椭圆过点,所以①,设为坐标原点,因为,所以,又,所以②,将①②联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将代入,消去可得,则,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以直线过定点,该定点的坐标为.18、(1)(2)【解析】

(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19、(1)存在;详见解析(2)【解析】

(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,写出各点坐标,用向量法求二面角.【详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下,取中点,连结.即易得所以面面,即面.(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为.【点睛】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角.线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的.求空间角一般是建立空间直角坐标系,用空间向量法求空间角.20、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解析】

(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的城市数量为.由以上数据完善列联表如下图,业绩突出城市业绩不突出城市总计外卖甲4060100外卖乙5248100总计92108200且的观测值为,∴有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①样本平均数,故==,,的数学期望,②由分层抽样知,则100个城市中每月订单数在区间内的有(个),每月订单数在区间内的有(个),若不开展营销活动,则一个月的利润为(万元),若开展营销活动,则一个月的利润为(万元),这100个城市中开展营销活动比不开展每月多盈利100万元.【点睛】本题考查了频率分布直方图与频率分布表的应用,完善列联表并计算的观测值作出判断,分层抽样的简单应用,综合性强,属于中档题.21、(1)极小值点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论