版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章计数原理、概率、随机变量及其分布第一节两个计数原理、排列与组合·考试要求·理解排列、组合的概念,掌握排列数公式及组合数公式,并能利用公式解决一些简单的实际问题.必备知识落实“四基”
自查自测知识点一两个计数原理1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为(
)A.16 B.13C.12 D.102.从4名女同学和3名男同学中选1人主持本班的某次主题班会,则不同选法的种数为___.7C3.3个班分别从4个景点中选择一处游览,不同的选法有________种.64
解析:因为这3个班各有4种选法,由分步乘法计数原理,可得不同的选法有4×4×4=64(种).4.(教材改编题)如图,从A城到B城有3条路,从B城到D城有4条路,从A城到C城有4条路,从C城到D城有5条路,则从A城到D城共有________条不同的路线.
32
解析:“从A城到D城”共有两类方法:(1)从A城经B城到D城,有3×4=12(条)不同的路线;(2)从A城经C城到D城,有4×5=20(条)不同的路线,所以共有12+20=32(条)不同的路线.
核心回扣名称分类加法计数原理分步乘法计数原理条件完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法结论完成这件事共有N=______种不同的方法完成这件事共有N=______种不同的方法m+nm×n注意点:两个计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.
√
√3.6名学生排成两排,每排3人,则不同的排法种数为(
)A.36 B.120C.720 D.240C
解析:由于6人排两排,每排3人,则先排第一排,共有6×5×4=120(种)排法,再排第二排,共有3×2×1=6(种)排法.由分步乘法计数原理可知,共有120×6=720(种)排法.√
核心回扣1.排列与组合的定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合的定义作为一组2.排列数、组合数的定义、公式、性质名称排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有__________的个数从n个不同元素中取出m(m≤n)个元素的所有__________的个数公式性质不同排列不同组合
核心考点提升“四能”
两个计数原理1.(2024·日照模拟)某商店共有A,B,C三个品牌的水杯,若甲、乙、丙每人买了一个水杯,且甲买的不是A品牌,乙买的不是C品牌,则这三人买水杯的不同情况共有(
)A.3种 B.7种C.12种 D.24种C
解析:由分步乘法计数原理可得这三人买水杯的不同情况共有2×2×3=12(种).√2.据史书的记载,最晚在春秋末年,人们已经掌握了完备的十进位制记数法,普遍使用了算筹这种先进的计算工具.算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,以此类推,遇零则置空,如图所示.
如:10记为,26记为,71记为.现有4根算筹,可表示出两位数的个数为(
)A.8 B.9C.10 D.12√C
解析:由题意知,共有4根算筹.当十位1根,个位3根时,共有2个两位数;当十位2根,个位2根时,共有4个两位数;当十位3根,个位1根时,共有2个两位数;当十位4根,个位0根时,共有2个两位数,所以一共有10个两位数.故选C.3.现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是(
)A.120 B.140C.240 D.260D
解析:先涂A处共有5种涂法,再涂B处共有4种涂法,再涂C处,若C处与A处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,则C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.√4.2023年杭州亚运会的吉祥物包括三种机器人造型,分别名叫“莲莲”“琮琮”“宸宸”,小辉同学将三种吉祥物各购买了两个(同名的两个吉祥物完全相同),送给三位好朋友,每人两个,则每位好朋友都收到不同名的吉祥物的分配方案共有________种.(用数字作答)6
解析:根据题意,设“莲莲”“琮琮”“宸宸”分别为A,B,C,则可得其组合形式为AB,AC,BC,故第一位好朋友有3种选择,第二位好朋友有2种选择,第三位好朋友只有1种选择,即每位好朋友都收到不同名的吉祥物的分配方案为3×2×1=6(种).
两个计数原理的应用(1)应用两个计数原理的难点在于明确是分类还是分步:分类要做到“不重不漏”,正确把握分类标准是关键;分步要做到“步骤完整”,步步相连才能将事件完成.(2)较复杂的问题可借助图表来完成.(3)对于涂色问题:①分清元素的数目以及在不相邻的区域内是否可以使用同类元素;②注意对每个区域逐一进行分析,分步处理.
√
(2)(2024·烟台模拟)书写汉字时,笔顺对书写的速度和字形的美观有非常关键的影响,为了满足课堂教学的需要,我们制定了一套现代汉语通用字的笔顺规范,但在进行书法创作时,笔顺则更加灵活多变,比如“必”字有五笔:左点、上点、右点、撇、卧钩,若要求第一笔不写卧钩,且最后一笔写右点,则“必”字不同的笔顺有(
)A.12种 B.18种C.24种 D.30种√
B
1.求解排列问题的四种方法2.两类组合问题的解题方法
√
分组分配问题考向1整体均分问题【例2】(2024·日照模拟)临近春节,某校书法爱好小组书写了若干副春联,准备赠送给四户独居老人.春联分为长联和短联两种,无论是长联或短联,内容均不相同.经过调查,四户老人各户需要1副长联,其中乙户老人需要1副短联,其余三户各需要2副短联.书法爱好小组按要求选出11副春联,则不同的赠送方法种数为________.
考向2部分均分问题【例3】第19届亚运会于2023年9月在杭州举行,在杭州亚运会三馆(杭州奥体中心主体育馆、游泳馆和综合训练馆)对外免费开放预约期间,甲、乙、丙、丁4人预约参观,且每人预约了1个或2个馆,则每个馆恰有2人预约的不同方案有(
)A.76种 B.82种C.86
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届广东汕头潮阳区高考考前提分英语仿真卷含解析
- 河北省鹿泉一中、元氏一中、正定一中等五校2025届高考适应性考试英语试卷含解析
- 北京市清华大学附中2025届高考英语全真模拟密押卷含解析
- 广东珠海二中2025届高三第二次诊断性检测英语试卷含解析
- 海南省海口市华侨中学2025届高三下学期第六次检测语文试卷含解析
- 福建省龙岩市龙岩第一中学2025届高三下学期联合考试英语试题含解析
- 湖北省襄阳市重点中学2025届高考全国统考预测密卷英语试卷含解析
- 《针对验厂管理培训》课件
- 2025届广东省揭阳市产业园区高三下学期第五次调研考试英语试题含解析
- 北京市东城区东直门中学2025届高考压轴卷数学试卷含解析
- 内蒙古自治区高等职业院校2024年对口招收中等职业学校毕业生单独考试语文试题(无答案)
- 幼儿园班本课程培训
- 2024-2025形势与政策:发展新质生产力-推动高质量发展的内在要求和重要着力点
- 2024年全国统一高考数学试卷(新高考Ⅰ)含答案
- 英语听力智慧树知到答案2024年贵州财经大学
- 质量管理题库
- 2024年部编版七年级上册语文期末专项训练:文言文对比阅读
- 2024-2030年智能交通项目可行性研究报告
- 山西省太原市2024-2025学年高一化学上学期期末考试试题
- gpu算力租赁合同
- 表演基础训练智慧树知到期末考试答案章节答案2024年上海戏剧学院
评论
0/150
提交评论