青岛理工大学《海报设计》2023-2024学年第一学期期末试卷_第1页
青岛理工大学《海报设计》2023-2024学年第一学期期末试卷_第2页
青岛理工大学《海报设计》2023-2024学年第一学期期末试卷_第3页
青岛理工大学《海报设计》2023-2024学年第一学期期末试卷_第4页
青岛理工大学《海报设计》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页青岛理工大学

《海报设计》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的目标计数是估计图像或视频中目标的数量。假设要在一张人群图像中准确计数人数,以下关于目标计数方法的描述,正确的是:()A.基于检测的计数方法通过检测每个个体来实现计数,对密集场景效果好B.基于回归的计数方法直接预测目标数量,计算速度快但精度较低C.深度学习中的注意力机制在目标计数中没有作用,不能提高计数准确性D.目标计数只需要考虑目标的外观特征,不需要考虑图像的上下文信息2、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和物体关系。以下关于利用深度学习模型的方法,哪一项是不太恰当的?()A.使用卷积神经网络(CNN)提取图像特征B.运用循环神经网络(RNN)处理场景的序列信息C.直接使用未经训练的神经网络,期望其自动学习场景理解D.结合CNN和RNN,构建端到端的场景理解模型3、在计算机视觉中,目标检测是一项重要任务。假设要在一张包含众多物体的复杂图像中准确检测出不同类型的车辆,例如轿车、卡车和摩托车。图像中的车辆可能具有不同的颜色、大小和姿态,而且背景也较为复杂。为了实现高精度的车辆检测,以下哪种方法通常被认为是最有效的?()A.基于传统图像处理技术,如边缘检测和形态学操作B.使用基于深度学习的目标检测算法,如FasterR-CNNC.采用简单的模板匹配方法,根据预先定义的车辆模板进行匹配D.对图像进行全局特征提取,然后基于这些特征进行分类4、假设要开发一个能够自动识别水果种类和品质的计算机视觉系统,用于水果分拣和质量评估。在获取水果图像时,可能会受到光照、角度和遮挡等因素的影响。为了提高识别的准确性和鲁棒性,以下哪种图像预处理技术可能是关键?()A.图像增强B.图像去噪C.图像归一化D.图像分割5、在计算机视觉的场景理解任务中,需要对整个图像场景进行分析和解释。假设我们有一张城市街道的图像,要理解其中的道路、建筑物、车辆和行人之间的关系。以下哪种方法能够提供更全面和深入的场景理解?()A.基于对象检测和分类的方法B.基于语义分割和图模型的方法C.基于深度学习的场景解析网络D.基于特征匹配和聚类的方法6、在计算机视觉的图像检索任务中,根据用户提供的图像或特征在数据库中查找相似的图像。假设要从一个大型图像库中找到与给定图像相似的图片,以下关于图像检索方法的描述,正确的是:()A.基于图像的颜色和纹理特征进行检索能够满足所有的检索需求B.深度学习中的卷积神经网络提取的特征在图像检索中不如手工设计的特征有效C.考虑图像的语义信息和高层特征可以提高图像检索的准确性和相关性D.图像检索的速度和效率不受数据库大小和特征维度的影响7、在计算机视觉的图像增强处理中,目的是改善图像的质量和可读性。假设我们要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,哪一项是不正确的?()A.直方图均衡化可以通过调整图像的灰度分布,增强图像的对比度B.基于Retinex理论的方法可以分离图像的光照和反射成分,从而改善图像的视觉效果C.图像增强算法可以在不增加噪声的情况下,显著提高图像的亮度和清晰度D.不同的图像增强方法适用于不同类型的图像,需要根据具体情况选择合适的方法8、计算机视觉中的动作识别是对视频中的人体动作进行分类和理解。假设我们要分析一段体育比赛的视频,识别其中运动员的各种动作,以下哪种方法能够有效地捕捉动作的时空特征?()A.基于手工特征和分类器的方法B.基于深度学习的时空卷积网络C.基于光流和轨迹的方法D.基于隐马尔可夫模型的方法9、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要对一张受到严重噪声污染的图像进行去噪处理,以下关于图像去噪方法的描述,正确的是:()A.均值滤波方法能够在去除噪声的同时很好地保留图像的细节B.中值滤波对椒盐噪声的去除效果不佳C.基于深度学习的图像去噪方法可以自适应地学习噪声模式和图像特征D.图像去噪不会引入任何新的失真或模糊10、在计算机视觉的人脸识别任务中,假设要实现一个能够在不同光照和表情下准确识别的系统。以下关于数据预处理的步骤,哪一项是最重要的?()A.对人脸图像进行归一化处理,统一大小和亮度B.对图像进行锐化处理,增强面部特征C.给图像添加艺术效果,提高美观度D.随机裁剪图像,增加数据多样性11、在计算机视觉的图像增强任务中,旨在改善图像的质量。假设一张低光照条件下拍摄的照片需要增强。以下关于图像增强方法的描述,哪一项是错误的?()A.可以通过直方图均衡化方法增强图像的对比度B.基于滤波的方法能够去除图像中的噪声,同时增强细节C.图像增强可以无限制地提高图像的质量,不存在过度增强的问题D.深度学习中的生成对抗网络(GAN)也可以用于图像增强12、在一个基于计算机视觉的智能交通监控系统中,需要对车辆的类型、速度和行驶轨迹进行分析。以下哪种技术在车辆分析方面可能发挥关键作用?()A.目标检测和跟踪B.车牌识别C.轨迹预测D.以上都是13、图像分类是计算机视觉的常见任务之一。假设要对大量的自然风景图片进行分类,如山脉、森林、海滩等。在进行图像分类时,以下关于数据增强的方法,哪一项可能不太有效?()A.对图像进行随机裁剪和旋转,增加数据的多样性B.改变图像的色彩和对比度,模拟不同的拍摄条件C.直接复制原图像,增加数据量D.给图像添加随机噪声,增强模型的鲁棒性14、计算机视觉中,以下哪种技术常用于图像的超分辨率重建的损失函数?()A.L1损失B.L2损失C.感知损失D.以上都是15、在计算机视觉中,图像去雾是提高有雾图像质量的技术。以下关于图像去雾的描述,不准确的是()A.图像去雾可以基于物理模型或深度学习方法来实现B.深度学习方法在图像去雾中能够有效地恢复图像的细节和颜色C.图像去雾只对轻度有雾的图像有效,对于浓雾图像效果不佳D.图像去雾可以提高图像的清晰度和可视性,有助于后续的处理和分析16、假设要开发一个能够对指纹进行识别和认证的计算机视觉系统,以下哪种特征提取和匹配方法可能在指纹识别中具有较高的准确性?()A.细节点提取B.方向场提取C.纹理特征提取D.以上都是17、计算机视觉中的光流估计是计算图像中像素的运动信息。以下关于光流估计的叙述,不正确的是()A.光流估计可以用于视频中的运动分析、目标跟踪和动作识别等任务B.基于深度学习的光流估计方法在精度和速度上都有了很大的提升C.光流估计只对匀速运动的物体有效,对于复杂的非匀速运动估计不准确D.光流估计的结果可以为后续的计算机视觉任务提供重要的运动线索18、在计算机视觉的姿态估计任务中,例如估计人体关节的位置和姿态,以下哪种方法可能在精度和实时性之间取得较好的平衡?()A.基于模型的方法B.基于深度学习的回归方法C.基于深度学习的分类方法D.以上都不是19、计算机视觉中的姿态估计是指确定物体在三维空间中的位置和方向。以下关于姿态估计的说法,错误的是()A.姿态估计可以通过单目相机、双目相机或深度相机来实现B.基于深度学习的方法在姿态估计任务中表现出了较高的精度C.姿态估计在机器人操作、增强现实等领域有着重要的应用价值D.姿态估计的结果总是非常精确,不受物体形状和遮挡的影响20、计算机视觉在人脸识别领域取得了显著进展。假设要开发一个人脸识别系统,以下关于人脸识别技术的描述,哪一项是不正确的?()A.可以通过提取人脸的几何特征、纹理特征或深度学习特征进行识别B.人脸识别系统通常需要进行活体检测,以防止使用照片或视频等欺诈手段C.大规模的人脸数据集和深度学习模型的结合,大大提高了人脸识别的准确率D.人脸识别技术在任何光照条件、姿态变化和表情变化下都能准确识别,不受这些因素的影响21、在计算机视觉的目标计数任务中,统计图像或视频中目标的数量。假设要统计一个果园中苹果的数量,以下关于目标计数方法的描述,哪一项是不正确的?()A.可以基于图像分割和对象识别的方法,先分割出每个苹果,然后进行计数B.利用深度学习中的回归模型直接预测苹果的数量C.目标计数不受苹果的大小、形状和分布的影响,任何情况下都能准确计数D.结合多视角图像或视频序列可以提高目标计数的准确性22、计算机视觉中的医学图像分析对于疾病的诊断和治疗具有重要意义。以下关于医学图像分析的描述,不准确的是()A.可以对X光、CT、MRI等医学图像进行病灶检测、器官分割和疾病分类B.深度学习技术在医学图像分析中取得了显著的成果,但也面临数据标注困难和模型泛化能力不足的问题C.医学图像分析需要遵循严格的医学标准和伦理规范,确保结果的准确性和可靠性D.医学图像分析完全依赖于计算机视觉技术,医生的经验和专业知识不再重要23、在计算机视觉的实际应用中,光照变化会对图像的处理和分析产生影响。以下关于光照变化的描述,不正确的是()A.光照变化可能导致图像的亮度、对比度和颜色发生改变,增加了图像处理的难度B.一些预处理技术,如直方图均衡化,可以在一定程度上减轻光照变化的影响C.深度学习模型能够自动适应各种光照变化,无需进行额外的处理D.光照变化对于目标检测和跟踪等任务的准确性可能会产生较大的影响24、在图像去噪中,BM3D(Block-Matchingand3DFiltering)算法的优势在于()A.去噪效果好B.保持图像细节C.计算效率高D.以上都是25、在计算机视觉的图像去模糊任务中,需要恢复由于相机抖动或物体运动导致的模糊图像。假设一张夜景照片由于长时间曝光而模糊,同时存在噪声和低光照条件。以下哪种图像去模糊算法在处理这种情况时效果较好?()A.盲去卷积算法B.基于正则化的去模糊算法C.深度学习的去模糊模型D.频域去模糊方法26、在计算机视觉的图像语义分割任务中,假设要处理具有多尺度特征的图像,例如同时包含大物体和小物体的场景。以下关于处理多尺度特征的方法描述,正确的是:()A.使用单一尺度的特征提取网络可以应对多尺度问题,通过调整网络参数即可B.采用多尺度输入图像,分别进行处理后再融合结果,能够有效解决多尺度问题,但计算量大C.空洞卷积在处理多尺度特征时会引入大量的噪声,降低分割精度D.图像语义分割中多尺度问题无法解决,只能尽量避免处理这类图像27、在计算机视觉领域中,当需要对监控视频中的行人进行实时检测和跟踪,以实现智能安防系统的功能时,以下哪种方法在处理复杂场景和多目标跟踪方面可能表现更为出色?()A.基于传统图像处理的方法B.基于深度学习的目标检测算法C.基于特征匹配的跟踪算法D.基于光流法的跟踪算法28、计算机视觉中的车牌识别是智能交通系统中的重要组成部分。假设要在一个高速公路收费站实现准确的车牌识别,以下关于车牌识别方法的描述,正确的是:()A.基于边缘检测和字符分割的方法对车牌的变形和污渍具有很强的适应性B.深度学习中的卷积神经网络能够直接从车牌图像中识别出字符,但对车牌的倾斜和光照不均敏感C.车牌识别系统只需要在白天光照良好的条件下工作,夜间和恶劣天气下无法正常运行D.车牌识别的准确率只取决于车牌图像的清晰度,与车牌的颜色和字体无关29、计算机视觉中的视频压缩是为了减少视频数据的存储空间和传输带宽。假设要对一段高清视频进行压缩,同时保持较好的视觉质量。以下关于视频压缩方法的描述,正确的是:()A.帧内压缩通过去除图像内部的冗余信息实现压缩,对图像质量影响较小B.帧间压缩利用相邻帧之间的相似性进行压缩,但会引入明显的失真C.运动估计在帧间压缩中不重要,对压缩效率提升作用不大D.视频压缩的码率越低,压缩效果越好,视觉质量也越高30、计算机视觉中的图像增强技术可以改善图像质量。假设要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,正确的是:()A.简单地增加图像的亮度就能有效改善低光照图像的质量B.直方图均衡化方法总是能够在不引入噪声的情况下增强图像对比度C.基于深度学习的图像增强方法能够自适应地学习到适合的增强策略D.图像增强不会改变图像的原始信息和内容二、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标跟踪算法,跟踪海洋生物的游动轨迹。2、(本题5分)运用图像识别算法,对不同类型的交通工具图像进行分类和识别。3、(本题5分)利用图像识别技术,对不同品牌的电脑显示器图像进行识别和分类。4、(本题5分)通过计算机视觉,对不同类型的刺绣作品进行分类。5、(本题5分)通过计算机视觉,对不同类型的糖画作品进行分类。三、简答题(本大题共5个小题,共25分)1、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论