2024-2025学年年七年级数学人教版下册专题整合复习卷12.3 角的平分线的判定 第2课时同步练习(含答案)_第1页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.3 角的平分线的判定 第2课时同步练习(含答案)_第2页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.3 角的平分线的判定 第2课时同步练习(含答案)_第3页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.3 角的平分线的判定 第2课时同步练习(含答案)_第4页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.3 角的平分线的判定 第2课时同步练习(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年年七年级数学人教版下册专题整合复习卷12.3角的平分线的判定第2课时同步练习(含答案)12.3第2课时角的平分线的判定一、选择题1.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点2.如图,AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定第2题图第3题图第4题图3.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC,交AB于E,则下列结论一定正确的是() A. AE=BE B. DB=DE C. AE=BD D. ∠BCE=∠ACE4.如图,△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=() A. 110° B. 120° C. 130°D. 140°5.如图,,△ABC的两个外角平分线交于点P,则下列结论正确的是()①PA=PC②BP平分∠ABC③P到AB,BC的距离相等④BP平分∠APC.A. ①② B. ①④ C. ②③ D. ③④第5题图第6题图第7题图6.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A、1处B、2处C、3处D、4处7.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,M为AD上任意一点,则下列结论错误的是()(A)DE=DF.(B)ME=MF.(C)AE=AF.(D)BD=DC.8.如图,△ABC,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,有下列四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B、C两点的距离相等;④到AE,AF距离相等的点到DE、DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个第8题图第10题图第11题图二、填空题9.在角的内部到角的两边距离相等的点的轨迹是这个角的.10.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=°.11.如图,AB∥CD,点P到AB、BC、CD距离都相等,则∠P=°.12.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=°.第12题图第13题图13.如图,△ABC的∠ABC的外角平分线BD与∠ACB的外角平分线CE相交于点P,若点P到AC的距离为4,则点P到AB的距离为.14.如图,△ABC中,∠C=90°,∠A=36°,DE⊥AB于D,且EC=ED,∠EBC=______-°15.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为第14题图第15题图第16题图16.如图,点M在∠ABC内,ME⊥AB于E点,MF⊥BC于F点,且ME=MF,∠ABC=70°,则∠BME=°.三、解答题17.如图,表示两条相交的公路,现要在的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处点的距离为1000米.(1)若要以的比例尺画设计图,求物流中心到公路交叉处点的图上距离;(2)在图中画出物流中心的位置.18.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.19.PB,PC分别是△ABC的外角平分线且相交于P.求证:P在∠A的平分线上(如图).20.已知:如图,,是的中点,平分.(1)若连接,则是否平分?请你证明你的结论.(2)线段与有怎样的位置关系?请说明理由.22134DCMBA21.(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.参考答案一、选择题1.D2.A3.D4.A5.C6.D7.D8.D二、填空题9.平分线10.3511.9012.5513.414.2715.316.55三、解答题17.解:(1)1000米=100000厘米,100000÷50000=2(厘米);(2)18.证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠FAP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.19.证明:过P点作PE,PH,PG分别垂直AB,BC,AC.∵PB,PC分别是△ABC的外角平分线,∴PE=PH,PH=PG,∴PE=PG.∴P点在∠A的平分线上.20.(1)平分.2134DCMB2134DCMBAE,,,(角平分线上的点到角两边的距离相等).又,.,,平分(到角的两边距离相等的点在这个角的平分线上).(2),理由如下:,(垂直于同一条直线的两条直线平行).(两直线平行,同旁内角互补)又,(角平分线定义),,.即.21.解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;∴就不能判定OP就是∠AOB的平分线;方案(Ⅱ)可行.证明:在△OPM和△OPN中,,∴△OPM≌△OPN(SSS),∴∠AOP=∠BOP(全等三角形对应角相等);∴OP就是∠AOB的平分线.(2)当∠AOB是直角时,此方案可行;∵四边形内角和为360°,∠OMP=∠ONP=90°,∠MPN=90°,∴∠AOB=90°,∵PM=PN,∴OP为∠AOB的平分线.(到角两边距离相等的点在这个角的角平分线上),当∠AOB不为直角时,此方案不可行;因为∠AOB必为90°,如果不是90°,则不能找到同时使PM⊥OA,PN⊥OB的点P的位置.12.3角的平分线的性质(第1课时)一、选择题1.用尺规作已知角的平分线的理论依据是()A.SASB.AASC.SSSD.ASA2.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A、PD=PEB、OD=OEC、∠DPO=∠EPO;D、PD=OD3.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cmB.4cmC.3cmD.2cm4.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长为()A.4㎝B.6㎝C.10㎝D.不能确定第2题图第3题图第4题图5.如图,OP平分,,,垂足分别为A,B.下列结论中不一定成立的是()A. B.平分C. D.垂直平分6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是() A.4 B. 3 C. 6D. 5第5题图第6题图第7题图7.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为() A、11 B、5.5C、7 D、3.58.已知:如图,△ABC中,∠C=90o,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别等于()(A)2cm、2cm、2cm.(B)3cm、3cm、3cm.(C)4cm、4cm、4cm.(D)2cm、3cm、5cm.二、填空题9.如图,P是∠AOB的角平分线上的一点,PC⊥OA于点C,PD⊥OB于点D,写出图中一对相等的线段(只需写出一对即可).10.如图,在△ABC中,∠A=90°,BD平分∠ABC,AD=2cm,则点D到BC的距离为________cm.11.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为.第9题图第10题图第11题图12.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.第12题图第13题图第15题图13.如图,在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为.14.已知△ABC中,AD是角平分线,AB=5,AC=3,且S△ADC=6,则S△ABD=.15.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,则EF与AD的关系是.16.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为.17.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.第16题图第17题图第18题图18.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=.三、解答题19.已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,AFCDEBBD=CDAFCDEB20.如图,画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22.如图,已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、BA、AE三者之间有何关系?并加以证明.23.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点E,EF⊥AB于F,EG⊥AG交AC的延长线于G.求证:BF=CG.

参考答案一、选择题1.C2.D3.C4.B5.D6.B7.B8.A二、填空题9.PC=PD(答案不唯一)10.211.312.1513.414.1015.AD垂直平分EF16.517.418.4:5:6三、解答题19.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB与Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C.20.解:PE=PF,理由是:过点P作PM⊥OA,PN⊥OB,垂足是M,N,则∠PME=∠PNF=90°,∵OP平分∠AOB,∴PM=PN,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN,∴PE=PF.21.(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=33°(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,∵,∴△ACN≌△MCN.22.解:BC、BA、AE三者之间的关系:BC=BA+AE,理由如下:过E作ED⊥BC交BC于点D,∵BE平分∠ABC,BA⊥CA,∴AE=DE,∠EDC=∠A=∠BDE=90°,∵在Rt△BAE和Rt△BDE中,∴Rt△BAE≌Rt△BDE(HL),∴BA=BD,∵AB=AC,∠A=90°∴∠C=45°,∴∠CED=45°=∠C,∴DE=CD,∵AE=DE,∴AE=CD=DE,∴BC=BD+DC=BA+AE.23.证明:连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥ABEG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG12.3角的平分线的性质专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,,AD是∠BAC的角平分线,DE⊥AB于点E,AC=3cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案1.证明:∵,∴AD是的平分线,∴.在和中,∴.∴.又∵,∴,∴.2.证明:∵AO平分∠BAC,OD⊥AB,OE⊥AC,∴OD=OE,在Rt△BDO和Rt△CEO中,∴.∴OB=OC.3.解:∵∠C=90°,∴∠BAC+∠B=90°,又DE⊥AB,∴∠C=∠AED=90°,又,∴∠A=60°,∠B=30°,又∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DC=DE,∴cm.在Rt△DAE和Rt△DBE中,∴△DAE≌△DBE(AAS),∴cm.4.C解析:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.5.∠A的角平分线上,且距A1cm处角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P就是所求作的点.12.3角的平分线的性质1.角的平分线的性质(1)内容角的平分线上的点到角的两边的距离相等.(2)书写格式如图所示,∵点P在∠AOB的角平分线上,PD⊥OA,PE⊥OB,∴PD=PE.谈重点角平分线的性质的理解和应用(1)使用角的平分线的性质有两个条件:①点在角的平分线上;②过这一点作角的两边的垂线段.结论是:这点到角的两边的距离相等,即两条垂线段相等.(2)角的平分线的性质是证明两线段相等的方法之一,而且不用再证明两个三角形全等.(3)如果已知一个点在角的平分线上,常作出该点到角两边的垂线段,运用性质得到两线段相等.【例1】如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若CD=2cm,则点D到直线AB的距离是__________cm.解析:因为点D在∠ABC的角平分线上,所以点D到直线AB的距离等于点D到直线BC的距离,即点D到直线AB的距离等于CD的长.答案:22.角的平分线的判定(1)内容角的内部到角的两边的距离相等的点在角的平分线上.(2)书写格式如图所示,∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的角平分线上.(3)作用运用角的平分线的判定,可以证明两个角相等和一条射线是角的平分线.警误区角的平分线的性质和判定适用的条件在运用角的平分线的性质和判定时,往往错误地将一线段当作“距离”,主要原因是不能正确理解角平分线的性质和判定,因此在运用角的平分线的性质和判定时,一定要注意“距离”必须有垂直的条件.【例2】如图所示,BE=CF,BF⊥AC于点F,CE⊥AB于点E,BF和CE交于点D,求证:AD平分∠BAC.证明:∵BF⊥AC,AB⊥CE,∴∠DEB=∠DFC=90°.在△BDE和△CDF中,∵eq\b\lc\{\rc\(\a\vs4\al\co1(∠DEB=∠DFC,,∠BDE=∠CDF,,BE=CF,))∴△BDE≌△CDF(AAS).∴DE=DF.又∵BF⊥AC,AB⊥CE,∴AD平分∠BAC(角的内部到角的两边距离相等的点在角的平分线上).3.运用角的平分线的性质解决实际问题运用角的平分线的性质的前提条件是已知角的平分线以及角平分线上的点到角两边的距离.在运用角的平分线的性质解决实际问题时,题目中常常出现求到某个角的两边距离相等的点的位置,只要作出角的平分线即可.运用角平分线的性质解决实际问题时,一定要把实际问题中道路、河流等抽象成数学图形直线,并且要求的点是到两线的距离相等,常常确定两线夹角的平分线上的点,这个过程就是建立数学模型的过程,这是在解决实际问题中常用的方法.4.运用角的平分线的判定解决实际问题在实际问题中,如果出现了某个地点到某些线的距离相等,常先把实际问题转化为数学问题,即建立数学模型(角的平分线).然后根据已知某点到角两边的距离相等,则常常联想到用角的平分线的判定得到角的平分线来解决问题.解技巧巧用角的平分线的性质和判定解决问题能根据已知条件联想到角的平分线的性质或判定是解决问题的关键.找到解决问题的切入点就是已知条件中有点到直线的距离相等或要找到到两条直线的距离相等的点.5.综合运用角的平分线的性质和判定解决实际问题角的平分线的性质和判定的关系如下:对于角的平分线的性质和判定,一方面要正确理解和明确其条件和结论,“性质”和“判定”恰好是条件和结论的互换,在应用时不要混淆,性质是证两条线段相等的依据,判定是证明两角相等的依据.析规律构造角的平分线的模型证明线段相等当有角平分线时,常过角平分线上的点向角的两边作垂线,根据角平分线的性质得线段相等.同样,欲证明某射线为角平分线时,只需过其上一点向角的两边作垂线,再证线段相等即可.【例3】如图,某考古队为进行研究,寻找一座古城遗址.根据资料记载,该城在森林附近,到两条河岸的距离相等,到古塔的距离是3000m.根据这些资料,考古队很快找到了这座古城的遗址.你能运用学过的知识在图中合理地标出古城遗址的位置吗?请你试一试.(比例尺为1∶100000)解:如图.作法:(1)以点C为圆心,以任意长为半径画弧,交两河岸于A,B两点,分别以A,B为圆心,以大于eq\f(1,2)AB长为半径画弧,两弧交于点O,过C,O作射线CO.(2)按比例尺计算得古塔与P的图上距离为3cm,以古塔为圆心,以3cm长为半径画弧交CO于点P,则点P即为所求.【例4】如图所示,有一名民警在值班,他位于到平行的大街两侧以及过街天桥AB的距离相等的点P处.此时,这位民警发现有一可疑分子从天桥A处走向B处,请问民警在注视可疑分子从A处走到B处时,他的视线转过了多大角度?解:连接PA,PB.∵点P到BE,AF,AB的距离相等,∴PA,PB分别是∠FAB,∠EBA的角平分线,即∠PBA=eq\f(1,2)∠EBA,∠PAB=eq\f(1,2)∠FAB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论