海西市重点中学2025届高三第一次调研测试数学试卷含解析_第1页
海西市重点中学2025届高三第一次调研测试数学试卷含解析_第2页
海西市重点中学2025届高三第一次调研测试数学试卷含解析_第3页
海西市重点中学2025届高三第一次调研测试数学试卷含解析_第4页
海西市重点中学2025届高三第一次调研测试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海西市重点中学2025届高三第一次调研测试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,既是奇函数,又在上是增函数的是().A. B.C. D.2.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.4.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.5.设,则()A. B. C. D.6.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率()A. B.C. D.7.已知函数(),若函数在上有唯一零点,则的值为()A.1 B.或0 C.1或0 D.2或08.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里10.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.11.已知全集,集合,则=()A. B.C. D.12.在中,角所对的边分别为,已知,则()A.或 B. C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______.14.的展开式中,若的奇数次幂的项的系数之和为32,则________.15.在的展开式中,的系数等于__.16.春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有__________种选派方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.18.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.19.(12分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点.(1)写出曲线C的一般方程;(2)求的最小值.20.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.21.(12分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.22.(10分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.2、C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.3、B【解析】

取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.4、C【解析】

先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.5、C【解析】试题分析:,.故C正确.考点:复合函数求值.6、A【解析】

计算出黑色部分的面积与总面积的比,即可得解.【详解】由,∴.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.7、C【解析】

求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【详解】解:∵(),∴,∴当时,由得,则在上单调递减,在上单调递增,所以是极小值,∴只需,即.令,则,∴函数在上单调递增.∵,∴;当时,,函数在上单调递减,∵,,函数在上有且只有一个零点,∴的值是1或0.故选:C【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.8、D【解析】

设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.9、B【解析】

人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.10、C【解析】

设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.11、D【解析】

先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.12、D【解析】

根据正弦定理得到,化简得到答案.【详解】由,得,∴,∴或,∴或.故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、2022【解析】

根据条件先求出数列的通项,利用累加法进行求解即可.【详解】,,,下面求数列的通项,由题意知,,,,,,数列是递增数列,且,的最小值为.故答案为:.【点睛】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键.综合性较强,属于难题.14、【解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.15、7【解析】

由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.16、24【解析】

先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可.【详解】解:每地一名医生,3名护士的选派方法的种数有,若甲乙两名护士到同一地的种数有,则甲乙两名护士不到同一地的种数有.故答案为:.【点睛】本题考查利用间接法求排列组合问题,正难则反,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数,利用单调性和最值,求出实数的取值范围.【详解】(1)设,,所以函数在上单调递增,又因为和,则,所以得解得,即,故的取值范围为;(2)由于恒成立,恒成立,设,则,令,则,所以在区间上单调递增,所以,根据条件,只要,所以.【点睛】本题考查利用定义法求函数的单调性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.18、(1)乙同学正确;(2).【解析】

(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:021212由上表可知,“理想数据”的个数为.用列举法可知,从个不同数据里抽出个不同数据的方法有种.从符合条件的个不同数据中抽出个,还要在不符合条件的个不同数据中抽出个的方法有种.故所求概率为【点睛】本小题主要考查回归直线方程的判断,考查古典概型概率计算,考查数据处理能力,属于中档题.19、(1);(2).【解析】

(1)将曲线的参数方程消参得到普通方程;(2)写出直线MN的参数方程,将参数方程代入曲线方程,并将其化为一个关于的一元二次方程,根据,结合韦达定理和余弦函数的性质,即可求出的最小值.【详解】(1)由曲线C的参数方程(是参数),可得,即曲线C的一般方程为.(2)直线MN的参数方程为(t为参数),将直线MN的参数方程代入曲线,得,整理得,设M,N对应的对数分别为,,则,当时,取得最小值为.【点睛】该题考查的是有关参数方程的问题,涉及到的知识点有参数方程向普通方程的转化,直线的参数方程的应用,属于简单题目.20、(1)见解析,40元(2)6000元【解析】

(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【点睛】考查离散型随机变量的分布列及其期望的求法,中档题.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)求函数的导函数,即可求得切线的斜率,则切线方程得解;(Ⅱ)构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【详解】(Ⅰ)当时,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论