南京特殊教育师范学院《文字与版式》2023-2024学年第一学期期末试卷_第1页
南京特殊教育师范学院《文字与版式》2023-2024学年第一学期期末试卷_第2页
南京特殊教育师范学院《文字与版式》2023-2024学年第一学期期末试卷_第3页
南京特殊教育师范学院《文字与版式》2023-2024学年第一学期期末试卷_第4页
南京特殊教育师范学院《文字与版式》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页南京特殊教育师范学院

《文字与版式》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的场景理解任务中,需要理解整个图像的语义信息。假设要分析一张城市街道的图像中包含的物体和它们之间的关系,以下关于场景理解方法的描述,正确的是:()A.单独对图像中的每个物体进行识别和分类就能实现场景理解B.忽略图像中的上下文信息和空间布局对场景理解没有影响C.利用深度学习中的语义分割和图模型可以更好地理解场景的结构和语义关系D.场景理解只适用于简单的室内场景,对于复杂的户外场景无法处理2、对于视频中的异常检测任务,假设要在一段监控视频中检测出异常事件,如闯入、打斗等。以下哪种方法可能更有助于准确检测异常?()A.建立正常行为模型,对比检测异常B.只关注视频中的显著运动区域C.随机判断视频中的帧是否异常D.不进行异常检测,直接忽略异常事件3、计算机视觉中的行人重识别是在不同摄像头拍摄的图像或视频中识别出特定的行人。以下关于行人重识别的叙述,不正确的是()A.行人重识别需要提取具有判别性的行人特征,克服视角、光照和姿态的变化B.深度学习方法在行人重识别任务中取得了显著的性能提升C.行人重识别在智能安防、视频监控和人员追踪等领域有重要的应用D.行人重识别技术已经能够在大规模数据集上达到100%的准确率4、在计算机视觉的图像分类任务中,假设数据集存在类别不平衡问题,某些类别的样本数量远远少于其他类别。以下哪种方法可以缓解这种不平衡对分类模型的影响?()A.对少数类进行过采样或对多数类进行欠采样B.只使用多数类的样本进行训练C.不考虑类别不平衡,直接训练模型D.随机选择样本进行训练5、在计算机视觉的医学图像分析中,辅助医生进行疾病诊断。假设要通过分析CT图像检测肿瘤的位置和大小,以下关于医学图像计算机视觉应用的描述,正确的是:()A.计算机视觉算法可以完全替代医生的诊断,不需要医生的进一步判断B.不同患者的个体差异和扫描参数的变化对肿瘤检测结果没有影响C.结合医生的先验知识和计算机视觉技术能够提高肿瘤检测的准确性和可靠性D.医学图像中的噪声和伪影对计算机视觉算法的性能没有影响6、物体检测是计算机视觉中的一项关键任务。假设一个智能监控系统需要检测场景中的特定物体,如背包、自行车等。以下关于物体检测算法的描述,哪一项是不正确的?()A.基于深度学习的物体检测算法能够同时检测多个物体,并给出它们的位置和类别B.可以通过滑动窗口的方法在图像中搜索可能的物体区域,然后进行分类判断C.物体检测算法需要对大量的标注图像进行训练,以学习不同物体的特征D.无论物体的大小、形状和颜色如何变化,物体检测算法都能准确检测到7、假设要构建一个能够对书画作品进行真伪鉴定的计算机视觉系统,需要对作品的笔触、线条和风格等特征进行分析。以下哪种技术在书画鉴定中可能具有应用前景?()A.笔迹分析B.风格迁移C.图像风格分析D.以上都是8、计算机视觉中的动作识别旨在识别视频中的人体动作。假设要对一段监控视频中的人员动作进行分类,以下关于动作识别方法的描述,正确的是:()A.基于手工特征和传统分类器的方法能够处理复杂的动作变化,准确率高B.深度学习中的循环神经网络(RNN)在动作识别中无法捕捉动作的时空特征C.3D卷积神经网络能够同时处理空间和时间维度的信息,适用于动作识别任务D.动作识别系统对视频的拍摄角度和背景变化不敏感,具有很强的通用性9、计算机视觉在文物保护和数字化中的应用可以帮助记录和分析文物信息。假设要对一件古老的雕塑进行三维数字化和表面纹理分析,以下关于文物保护计算机视觉应用的描述,正确的是:()A.传统的摄影测量方法在文物数字化中比基于深度学习的方法更精确B.文物的复杂形状和表面材质对数字化和分析过程没有挑战C.结合多种成像技术和计算机视觉算法能够更全面地获取文物的信息D.文物保护中的计算机视觉应用不需要考虑对文物的非接触性和无损性要求10、在计算机视觉中,以下哪种方法常用于图像的显著目标检测中的高层语义信息利用?()A.深度学习B.图模型C.注意力机制D.以上都是11、在计算机视觉的图像语义分割任务中,假设要处理具有多尺度特征的图像,例如同时包含大物体和小物体的场景。以下关于处理多尺度特征的方法描述,正确的是:()A.使用单一尺度的特征提取网络可以应对多尺度问题,通过调整网络参数即可B.采用多尺度输入图像,分别进行处理后再融合结果,能够有效解决多尺度问题,但计算量大C.空洞卷积在处理多尺度特征时会引入大量的噪声,降低分割精度D.图像语义分割中多尺度问题无法解决,只能尽量避免处理这类图像12、计算机视觉中的图像增强技术可以改善图像质量。假设要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,正确的是:()A.简单地增加图像的亮度就能有效改善低光照图像的质量B.直方图均衡化方法总是能够在不引入噪声的情况下增强图像对比度C.基于深度学习的图像增强方法能够自适应地学习到适合的增强策略D.图像增强不会改变图像的原始信息和内容13、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下哪种图像采集设备可能提供更高的分辨率和精度?()A.普通数码相机B.工业线阵相机C.手机摄像头D.监控摄像头14、假设要开发一个能够对指纹进行识别和认证的计算机视觉系统,以下哪种特征提取和匹配方法可能在指纹识别中具有较高的准确性?()A.细节点提取B.方向场提取C.纹理特征提取D.以上都是15、在计算机视觉中,以下哪种方法常用于图像的语义分割中的边界优化?()A.条件随机场B.全连接条件随机场C.深度学习D.以上都是16、计算机视觉中的三维重建技术可以从多幅图像中恢复物体的三维形状。假设要对一个古老建筑进行三维重建。以下关于三维重建方法的描述,哪一项是错误的?()A.可以通过立体视觉的方法,从不同角度拍摄的图像中计算深度信息B.基于结构光的方法能够快速获取物体表面的三维点云数据C.深度学习在三维重建中也有应用,能够学习从二维图像到三维形状的映射D.三维重建的结果总是非常精确,与真实物体的形状完全一致17、计算机视觉中的场景理解是对整个图像场景的语义和结构进行分析和理解。以下关于场景理解的描述,不准确的是()A.场景理解需要综合考虑物体、空间关系、上下文信息等多个方面B.可以通过构建场景图来表示场景中的实体和关系,辅助场景理解C.场景理解在智能导航、虚拟环境构建和图像编辑等领域具有潜在的应用价值D.场景理解是一个已经完全解决的问题,不存在任何技术难题18、计算机视觉在农业领域的应用可以帮助实现精准农业。假设一个农场需要通过计算机视觉监测农作物的生长状况。以下关于计算机视觉在农业中的描述,哪一项是错误的?()A.可以检测农作物的病虫害,及时采取防治措施B.能够评估农作物的生长阶段和成熟度,指导收获时间C.计算机视觉在农业中的应用完全不受天气和光照条件的影响D.可以通过无人机搭载摄像头进行大面积的农田监测19、在计算机视觉的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)特征是一种经典的方法。假设我们要对一组包含不同视角和缩放比例的物体图像进行匹配,SIFT特征的哪个特性使其在这种情况下表现出色?()A.对旋转和尺度变化具有不变性B.计算速度快,效率高C.特征维度低,易于存储和处理D.对光照变化不敏感20、在计算机视觉的图像检索任务中,根据用户的需求从图像数据库中查找相关图像。假设要从一个大型的图像库中检索包含特定物体的图像,以下关于图像检索方法的描述,哪一项是不正确的?()A.可以基于图像的内容特征,如颜色、形状和纹理等,进行相似性度量和检索B.深度学习模型能够提取更具语义和判别力的特征,提高图像检索的准确性C.图像检索的结果只取决于图像的特征表示,与检索算法的效率无关D.可以结合用户的反馈和交互,不断优化图像检索的结果二、简答题(本大题共5个小题,共25分)1、(本题5分)说明计算机视觉在手术导航中的应用。2、(本题5分)说明计算机视觉在橡胶制品检测中的应用。3、(本题5分)解释计算机视觉在残疾人服务中的应用。4、(本题5分)描述计算机视觉在水坝安全监测中的应用。5、(本题5分)说明计算机视觉在海洋化学分析中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)分析苹果电脑的包装设计,从材质选择、结构设计到图形印刷。探讨其如何体现品牌的高端品质和环保意识。2、(本题5分)以迪士尼的电影海报设计为例,分析其色彩搭配、角色造型和构图的特点。阐述这些设计元素如何吸引观众,传达电影的主题和情感。3、(本题5分)观察某文化创意集市的摊位设计和宣传海报设计,思考如何通过视觉元素展示集市的特色和创意产品。4、(本题5分)分析某品牌的户外广告设计中的创意策略,探讨其如何运用独特的创意和策略,吸引路人的注意力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论