版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE1广东省东莞市2024届高三上学期期末数学试题一、单项选择题1.已知复数,则()A. B.C. D.【答案】A【解析】.故选:A.2.已知集合,,则()A. B.C. D.【答案】C【解析】因为,,所以,所以.故选:C.3.已知由小到大排列的个数据、、、,若这个数据的极差是它们中位数的倍,则这个数据的第百分位数是()A. B.C. D.【答案】B【解析】由小到大排列的个数据、、、,则,这四个数为极差为,中位数为,因为这个数据极差是它们中位数的倍,则,解得,所以,这四个数由小到大依次为、、、,因为,故这个数据的第百分位数是.故选:B.4.函数的图象不可能是()A. B.C. D.【答案】D【解析】①当时,,此时A选项符合;②当时,,当时,,因为函数在上都是减函数,所以函数在在上是减函数,如图,作出函数在上的图象,由图可知,函数的图象在上有一个交点,即函数在在上有一个零点,当时,,则,由,得,由,得,所以函数在上单调递减,在上单调递增,当时,,故B选项符合;③当时,,当时,,因为函数在上都是减函数,所以函数在上是减函数,如图,作出函数在上的图象,由图可知,函数的图象在上有一个交点,即函数在在上有一个零点,当时,,则,由,得,由,得,所以函数在上单调递减,在上单调递增,当时,,故C选项符合,D选项不可能.故选:D.5.在等比数列中,,,则()A. B.C. D.【答案】C【解析】设首项为,公比为,易知,,可得,解得,而,故选:C6.已知,则的值为()A. B.C. D.【答案】A【解析】,即,由,故选:A.7.以抛物线C的顶点O为圆心的单位圆与C的一个交点记为点A,与C的准线的一个交点记为点B,当点A,B在抛物线C的对称轴的同侧时,OA⊥OB,则抛物线C的焦点到准线的距离为()A. B.C. D.【答案】D【解析】设抛物线方程为,由题意得,,过点作⊥轴于点,因为OA⊥OB,所以,又,所以,则≌,故,令得,,解得,故,由勾股定理得,解得,故抛物线C的焦点到准线的距离为.故选:D.8.如图,将正四棱台切割成九个部分,其中一个部分为长方体,四个部分为直三棱柱,四个部分为四棱锥.已知每个直三棱柱的体积为,每个四棱锥的体积为,则该正四棱台的体积为()A. B.C. D.【答案】C【解析】设每个直三棱柱高为,每个四棱锥的底面都是正方形,设每个四棱锥的底面边长为,设正四棱台的高为,因为每个直三棱柱的体积为,每个四棱锥的体积为,则,可得,可得,所以,该正四棱台的体积为.故选:C.二、多项选择题9.已知函数,,是的导函数,则下列结论正确的是()A.与对称轴相同 B.与周期相同C.的最大值是 D.不可能是奇函数【答案】BC【解析】由题意知,所以,对A:的对称轴为,,解得,;的对称轴为,,解得,,所以与的对称轴不相同,故A错误;对B:的周期为,的周期为,所以与的周期相同,故B正确;对C:,因为,所以,故C正确;对D:当,,,所以,此时为奇函数,故D错误;故选:BC.10.已知圆:,圆:,P,Q分别是,上的动点,则下列结论正确的是()A.当时,四边形的面积可能为7B.当时,四边形的面积可能为8C.当直线PQ与和都相切时,的长可能为D.当直线PQ与和都相切时,的长可能为4【答案】ACD【解析】圆:的圆心,半径;圆:的圆心,半径;可知,可知两圆外离,对于选项AB:设,因为,可知梯形的高为,所以四边形的面积为,可知四边形的面积可能为7,不可能为8,故A正确,B错误;对于选项CD:设直线与x轴的交点为,根据对称性可知:如图,因为,可知,则,可知,所以;如图,因为,可知,则,可知,所以;故CD正确;故选:ACD.11.已知函数,的定义域均为R,且,.若是的对称轴,且,则下列结论正确的是()A.是奇函数 B.是的对称中心C.2是的周期 D.【答案】BD【解析】对于A,因为是的对称轴,所以,又因为,所以,故,即为偶函数,故A错误;对于B,因为,所以,又因为,联立得,所以的图像关于点中心对称,故B正确;对于C,因为,,则,即;因为,则,即,则;显然,所以2不是的周期,故C错误;对于D,因为是的对称轴,所以,又因为,即,则,所以,所以,即,所以周期为4,因为周期为4,对称中心为,所以,当时,代入,即,所以,所以,又是的对称轴,所以,所以,故D正确,故选:BD.12.如图几何体是由正方形沿直线旋转得到的,已知点是圆弧的中点,点是圆弧上的动点(含端点),则下列结论正确的是()A.存在点,使得平面B.不存在点,使得平面平面C.存在点,使得直线与平面的所成角的余弦值为D.不存在点,使得平面与平面的夹角的余弦值为【答案】ACD【解析】由题意可将图形补全为一个正方体,如图所示:不妨设,以点为坐标原点,、、所在的直线分别为、、轴建立空间直角坐标系,则、、、、、,,设点,其中,对于A选项,假设存在点,使得平面,,,,则,可得,因,则,即当点与点重合时,平面,A对;对于B选项,由A选项可知,平面的一个法向量为,假设存点,使得平面平面,则,,则,可得,又因为,解得,即当点为的中点时,面平面,B错;对于C选项,若存在点,使得直线与平面的所成角的余弦值为,则直线与平面的所成角的正弦值为,且,所以,,整理可得,因为函数在时的图象是连续的,且,,所以,存在,使得,所以,存在点,使得直线与平面的所成角的余弦值为,C对;对于D选项,设平面的法向量为,,,则,取,可得,假设存在点,使得平面与平面的夹角的余弦值为,则,可得,即,可得或,因为,则,则,所以,,故当时,方程和均无解,综上所述,不存在点,平面与平面的夹角的余弦值为,D对.故选:ACD.三、填空题13.双曲线C:(,)的渐近线方程为,则其离心率______________.【答案】【解析】由题意可得,则.故答案为:.14.已知向量,,则使成立的一个充分不必要条件是______________.【答案】(答案不唯一)【解析】因为,,所以,,所以,解得,所以使成立的一个充分不必要条件是.故答案为:(答案不唯一)15.用试剂检验并诊断疾病,表示被检验者患疾病,表示判断被检验者患疾病.用试剂检验并诊断疾病的结论有误差,已知,,且人群中患疾病的概率.若有一人被此法诊断为患疾病,则此人确实患疾病的概率______________.【答案】【解析】由条件概率公式可得,,由条件概率公式可得,所以,,所以,.故答案为:.16.若函数的图象关于对称,则__________,的最小值为______________.【答案】【解析】因为函数的图象关于对称,令,可得,可得或,由对称性可知,方程的两根分别为、,由韦达定理可得,可得,所以,,则,所以,函数的图象关于直线对称,则,因为,令,令,所以,.故答案为:;.四、解答题17.数列前n项积为,且满足.(1)求数列的通项公式;(2)记,求数列的前2n项和.解:(1)因为,若,则;若,则,且符合,综上所述:数列的通项公式.(2)由(1)可知:,可得,所以.18.如图,在四棱锥中,四边形ABCD是边长为2的正方形,.(1)证明:平面平面;(2)若,,点E,F分别为PB,PD的中点,求点E到平面ACF的距离.(1)证明:连接,与相交于点,连接,四边形ABCD是边长为2的正方形,则,为和的中点,,则,平面,,平面,平面,所以平面平面(2)解:四边形ABCD是边长为2的正方形,,,,,则有,,以为原点,分别为轴,轴,轴,建立如图所示的空间直角坐标系,则,,,,,,设平面的一个法向量为,则有,令,得,即.,点E到平面的距离.19.中,角的对边分别为,且.(1)求;(2)若,且D为△ABC外接圆劣弧上一点,求的取值范围.(1)解:因为,由余弦定理得,整理得,可得,又因为,可得.(2)解:由圆内接四边形性质,可得,设,则,在中,由正弦定理得,所以,所以,因为,可得,可得,所以的取值范围为.20.已知椭圆:(),连接C的四个顶点所得四边形的面积为,且离心率为.(1)求椭圆的方程;(2)经过椭圆的右焦点且斜率不为零的直线与椭圆交于,两点,试问轴上是否存在定点,使得的内心也在轴上?若存在,求出点的坐标;若不存在,请说明理由.解:(1)由题意得,解得,所以椭圆的方程为.(2)因为直线过右焦点且斜率不为零,设直线的方程为,,,联立,得,恒成立,所以,,设轴上存在定点使得的内心在轴上,则直线和关于轴对称,所以直线和的倾斜角互补,所以,即,所以,即,整理得,即,即对所有恒成立,所以,所以存在定点符合题意.21.某区域中的物种C有A种和B种两个亚种.为了调查该区域中这两个亚种的数目比例(A种数目比B种数目少),某生物研究小组设计了如下实验方案:①在该区域中有放回的捕捉50个物种C,统计其中A种数目,以此作为一次试验的结果;②重复进行这个试验n次(其中),记第i次试验中的A种数目为随机变量();③记随机变量,利用的期望和方差进行估算.设该区域中A种数目为M,B种数目为N,每一次试验都相互独立.(1)已知,,证明:,;(2)该小组完成所有试验后,得到的实际取值分别为(),并计算了数据()的平均值和方差,然后部分数据丢失,仅剩方差的数据.(ⅰ)请用和分别代替和,估算和;(ⅱ)在(ⅰ)的条件下,求的分布列中概率值最大的随机事件对应的随机变量的取值.解:(1)由题可知(,2,…,n)均近似服从完全相同的二项分布,则,,,,所以,.(2)(ⅰ)由(1)可知,则的均值,的方差,所以,解得或,由题意可知:,则,所以,;(ⅱ)由(ⅰ)可知:,则,则,由题意可知:,解得,且,则,所以的分布列中概率值最大的随机事件对应的随机变量的取值为15.22.已知函数.(1)讨论的单调性;(2)若方程有、两个根,且,求实数的值.(1)解:函数的定义域为,.当时,由可得,由可得,此时,函数的增区间为,减区间为;当时,由可得,由可得,此时,函数的减区间为,增区间为.综上所述,当时,函数的增区间为,减区间为;当时,函数的减区间为,增区间为.(2)解:由,则方程的两根分别为、,等价于方程的两根分别为、,所以,,①,,②,因为,将代入②式可得。即,③,由①式可得,④,由③④可得,易知,不是方程根,故,所以,,所以,,下面验
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色环保型临建施工合同4篇
- 2025年化工产品国内运输保险协议
- 2025年度旅行社与旅游保险产品合作协议3篇
- 2025年人力资源灵活用工合同
- 二零二五年度重庆科技创新项目资金使用管理合同3篇
- 2025年勘探采矿合同解约协议书
- 2025年仓储库房闭路电视监控协议
- 2025年买卖合同解约通知书
- 2025年加盟合作推广协议
- 2025年仓储经营租赁协议
- 抗心律失常药物临床应用中国专家共识
- 考级代理合同范文大全
- 2024解析:第三章物态变化-讲核心(原卷版)
- DB32T 1590-2010 钢管塑料大棚(单体)通 用技术要求
- 安全行车知识培训
- 2024年安徽省高校分类对口招生考试数学试卷真题
- 第12讲 语态一般现在时、一般过去时、一般将来时(原卷版)
- 2024年采购员年终总结
- 2024年新疆区公务员录用考试《行测》试题及答案解析
- 肺动脉高压的护理查房课件
- 2025届北京巿通州区英语高三上期末综合测试试题含解析
评论
0/150
提交评论