版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page4四川省南充市2024-2025学年高三数学上学期入学考试(理)试题一.选择题;本小题共12题,每小题5分1.若,则(
)A. B. C. D.2.在极坐标系中,若,,则(
)A. B. C. D.3.下列双曲线中,焦点在y轴上,且渐近线相互垂直的是(
)A. B.C. D.4.积分(
)A. B. C. D.5.函数y=x2cos2x的导数为(
)A.y′=2xcos2x-x2sin2xB.y′=2xcos2x-2x2sin2xC.y′=x2cos2x-2xsin2xD.y′=2xcos2x+2x2sin2x6.在“一带一路”学问测验后,甲、乙、丙三人对成果进行预料.甲:我的成果比乙高.乙:丙的成果比我和甲的都高.丙:我的成果比乙高.成果公布后,三人成果互不相同且只有一个人预料正确,那么三人按成果由高到低的次序为
()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙7.一抛物线状的拱桥,当桥顶离水面1时,水面宽4,若水面下降3,则水面宽为(
)A.6 B.7 C.8 D.98.函数在区间[-,]上的图像大致为(
)A. B.C. D.9.设M是椭圆C:上位于第一象限内的一个动点,轴,N为垂足.当的面积最大时(O为坐标原点),其内切圆的半径r等于(
)A. B. C.2 D.10.设,,,则(
)A. B. C. D.11.已知、分别为椭圆的左、右焦点,为右顶点,为上顶点,若在线段上(不含端点)存在不同的两点,使得,则椭圆的离心率的取值范围为(
)A. B. C. D.12.已知定义在R上的函数,若函数恰有2个零点,则实数a的取值范围为(
)A. B.C. D.二、填空题;本题共4个小题,每小题5分,共20分。13.抛物线的准线方程是____________________.14.在极坐标系中,点到直线的距离为______.15.函数的单调递减区间是_______.16.丹麦数学家琴生是世纪对数学分析做出卓越贡献的巨人,特殊是在函数的凹凸性与不等式方面留下了许多珍贵的成果.定义:函数在上的导函数为,在上的导函数为,若在上恒成立,则称函数是上的“严格凸函数”,称区间为函数的“严格凸区间”.则下列正确命题的序号为____________.①函数在上为“严格凸函数”;②函数的“严格凸区间”为;③函数在为“严格凸函数”,则的取值范围为.三、解答题。共70分,解答应写出文字说明、证明过程或演算步骤。17.如图1,与三角形的三边都相切的圆叫做三角形的内切圆.设O是△ABC的内切圆圆心,内是△ABC的内切圆半径,设是△ABC的面积,是△ABC的周长,由等面积法,可以得到内.(1)与三棱锥的四个面都相切的球叫做三棱锥的内切球.设三棱锥的体积是,表面积是,请用类比推理思想,写出三棱锥的内切球的半径公式内(只写结论即可,不必写推理过程);(2)如图2,在三棱锥中,,,两两垂直,且,求三棱锥的内切球半径和外接球的半径之比.18.在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系.(1)求的一般方程和的极坐标方程;(2)求曲线上的点到曲线距离的最小值.19.函数f(x)=xlnx﹣a(x﹣1)(a∈R),已知x=e是函数f(x)的一个微小值点.(1)求实数a的值;(2)求函数f(x)在区间[1,3]上的最值.(其中e为自然对数的底数)20.如图,已知抛物线:,其上一点到其焦点的距离为,过焦点的直线与抛物线交于左、右两点.(Ⅰ)求抛物线的标准方程;(Ⅱ)若,求直线的方程.21.已知椭圆:()上一点到两个焦点的距离之和为4,离心率为.(1)求椭圆的方程和短轴长;(2)已知点,过左焦点且与不垂直坐标轴的直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年混凝土工程物流与运输服务合同
- 2025江苏店铺租赁版合同
- 2025年通辽货运从业资格仿真考题
- 2024年度北京教育培训合作协议2篇
- 2025主材采购合同
- 融资租赁公司租赁合同
- 2024年商铺租赁合同模板下载合同条款详细说明9篇
- 2024年度人力资源经理试用期合同范本(企业创新)5篇
- 城市排水系统土石方施工协议
- 2024区网红景点民宿租赁合同3篇
- 偏微分方程知到智慧树章节测试课后答案2024年秋浙江师范大学
- 2024年共青团入团考试测试题库及答案
- 2022年全国应急普法知识竞赛试题库大全-下(判断题库-共4部分-2)
- 花键计算公式DIN5480
- 《建筑与市政工程施工现场临时用电安全技术标准》JGJT46-2024知识培训
- 2024年事业单位招聘考试公共基础知识模拟试卷及答案(共七套)
- 《燃气安全知识培训》课件
- 高考及人生规划讲座模板
- 浙教版2023小学信息技术五年级上册 第6课《顺序结构》说课稿及反思
- 第20课《人民英雄永垂不朽》课件+2024-2025学年统编版语文八年级上册
- 智能语音应用开发及服务合同
评论
0/150
提交评论