2024届山东省聊城市华阳中学下学期高三期中数学试题_第1页
2024届山东省聊城市华阳中学下学期高三期中数学试题_第2页
2024届山东省聊城市华阳中学下学期高三期中数学试题_第3页
2024届山东省聊城市华阳中学下学期高三期中数学试题_第4页
2024届山东省聊城市华阳中学下学期高三期中数学试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届山东省聊城市华阳中学下学期高三期中数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.2.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”3.已知为坐标原点,角的终边经过点且,则()A. B. C. D.4.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或55.的展开式中的系数是()A.160 B.240 C.280 D.3206.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.47.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或8.已知集合,,若,则实数的值可以为()A. B. C. D.9.中,角的对边分别为,若,,,则的面积为()A. B. C. D.10.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.11.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()A. B. C. D.12.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,,若,则______.14.如图,直线是曲线在处的切线,则________.15.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.16.学校艺术节对同一类的,,,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“或作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“作品获得一等奖”.若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.18.(12分)已知函数.(1)若在处导数相等,证明:;(2)若对于任意,直线与曲线都有唯一公共点,求实数的取值范围.19.(12分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.20.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82821.(12分)椭圆:的离心率为,点为椭圆上的一点.(1)求椭圆的标准方程;(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值.22.(10分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.2.B【解析】

通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.3.C【解析】

根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.4.B【解析】

根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.5.C【解析】

首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.6.C【解析】

画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.7.D【解析】

由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.8.D【解析】

由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.【点睛】考查描述法表示集合的定义,以及并集的定义及运算.9.A【解析】

先求出,由正弦定理求得,然后由面积公式计算.【详解】由题意,.由得,.故选:A.【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解.10.D【解析】

根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.11.A【解析】双曲线﹣=1的渐近线方程为y=x,不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F1为直径的圆外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.则e=>1.∴双曲线离心率的取值范围是(1,+∞).故选:A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12.B【解析】

先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.-1【解析】

由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.【详解】由已知,∵,∴,.故答案为:-1.【点睛】本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.14..【解析】

求出切线的斜率,即可求出结论.【详解】由图可知直线过点,可求出直线的斜率,由导数的几何意义可知,.故答案为:.【点睛】本题考查导数与曲线的切线的几何意义,属于基础题.15.20.2【解析】

分别求出随机变量ξ1和ξ2的分布列,根据期望和方差公式计算得解.【详解】设a,b∈{1,2,1,4,5},则p(ξ1=a),其ξ1分布列为:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分别为:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案为:2,0.2.【点睛】此题考查随机变量及其分布,关键在于准确求出随机变量取值的概率,根据公式准确计算期望和方差.16.B【解析】

首先根据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【详解】若A为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B获得一等奖.【点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设为一等奖并通过是否满足题目条件来判断其是否正确.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.;证明见解析.【解析】

当时,集合共有个子集,即可求出结果;分类讨论,利用数学归纳法证明.【详解】当时,集合共有个子集,所以;①当时,,由可知,,此时令,,,,满足对任意,都有,且;②假设当时,存在有序集合组满足题意,且,则当时,集合的子集个数为个,因为是4的整数倍,所以令,,,,且恒成立,即满足对任意,都有,且,综上,原命题得证.【点睛】本题考查集合的自己个数的研究,结合数学归纳法的应用,属于难题.18.(I)见解析(II)【解析】

(1)由题x>0,,由f(x)在x=x1,x2(x1≠x2)处导数相等,得到,得,由韦达定理得,由基本不等式得,得,由题意得,令,则,令,,利用导数性质能证明.(2)由得,令,利用反证法可证明证明恒成立.由对任意,只有一个解,得为上的递增函数,得,令,由此可求的取值范围..【详解】(I)令,得,由韦达定理得即,得令,则,令,则,得(II)由得令,则,,下面先证明恒成立.若存在,使得,,,且当自变量充分大时,,所以存在,,使得,,取,则与至少有两个交点,矛盾.由对任意,只有一个解,得为上的递增函数,得,令,则,得【点睛】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题.19.(1)(2)【解析】

(1)项和转换可得,继而得到,可得解;(2)代入可得,由数列为递增数列可得,,令,可证明为递增数列,即,即得解【详解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵数列为递增数列,∴,即.令,即.∴为递增数列,∴,即的取值范围为.【点睛】本题考查了数列综合问题,考查了项和转换,数列的单调性,最值等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.20.(1)分层抽样,简单随机抽样(抽签亦可)(2)有(3)分布列见解析,【解析】

(1)根据题意可以选用分层抽样法,或者简单随机抽样法.(2)由已知条件代入公式计算出结果,进而可以得到结果.(3)由已知条件计算出的分布列,进而求出的数学期望.【详解】(1)分层抽样,简单随机抽样(抽签亦可).(2)将列联表中的数据代入公式计算得所以有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.(3)以频率作为概率,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为.可取0,1,2,3,计算可得的分布列为:0123【点睛】本题考查了运用数学模型解答实际生活问题,运用合理的抽样方法,计算以及数据的分布列和数学期望,需要正确运用公式进行求解,本题属于常考题型,需要掌握解题方法.21.(1);(2)证明见解析【解析】

(1)运用离心率公式和点满足椭圆方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论