版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《实际问题与方程》教学反思《实际问题与方程》教学反思「篇一」用方程解决问题的关键是找到题目中的等量关系,而对于班级中理解能力一直较差的那部分学生来说确实是一大挑战,学生又是刚接触用方程来解决问题,虽然连着几个课时的学习与练习,解题步骤与规范的书写都有了极大的改观,但分析题意、找等量关系还是个尚需努力提升的大问题。于是,这几个课时的例题我都处理得很慢,先把前一节课学生在作业中出现的易错点、薄弱环节作简要的补充复习,再设计一些较简单的题目为新知的学习创设一个奠基与梯子,让他们的思路更顺一些。比如说今天的这堂课,我参照教参建议,将本节课的例题以三个层次呈现:一、数学源于生活又用于生活,比如说今天我们去市场买水果,(出示苹果和梨子的图片),该付多少钱的问题?你们能列出等量关系式吗?大多数学生们快速准确地说出:苹果的总价+梨的总价=要付的水果总价。这个简单的等量关系式将是今天解决问题的重要依据,看似简单,但进入方程解决问题中,那些学习有困难的学生便慌了阵脚,不知如何下手,所以今天我们先来一些铺垫,让他们的思想少走弯路。接着,孩子们的思维打开了,补充了苹果的总价和梨的总价分别怎么计算,还主动向老师寻求条件来解决问题。这个主动解决问题的意识是好的开端;二、在解决基础题:已知苹果、梨的单价、数量,求出总价后,将条件与问题调整,已知苹果、梨的数量、梨的单价、要付的总钱数,求苹果的单价。题目一出,孩子们自信满满:“这两题都是一样的呀!”“一样中还有不一样,细心的同学一定会发现并解决它!”对呀,这两题的等量关系是一样的,数据是一样的,但要求的问题却不一样了,这道题用方程怎么解决?学生们主动拿起笔,回忆上节课所学所内容后开始解决问题:1、解:设未知数;2、根据第一个环节中的等量关系列出方程;他们都习惯了捉笔便完整答题,这种急切、主动的学习态度令我满意。不过,课堂上我们可以轻松一些,暂时休息一下,让我们来个解方程男女生P赛。古灵精怪的他们为对方选取了他们认为实力不太强的选手,其实不然,同学们都很有集体荣誉感,乐于参与、自信满满。而台下的孩子们则比台上的更是激动,在心里为同伴呐喊加油。“有些同学不仅在观战,还在看他们写得怎么样,还在思考、可能等下还有评价!”这时,原本有些躁动的课堂安静了,一个个手举了起来。他们的评价动听、到位、详细,也让参与者乐意接受。三、老师就是个“变题龙”,总喜欢把一道题变来变去。瞧!我把其中的一个数字改了,方法还是一样吗?把3千克梨变成“2千克梨”了。学生们纷纷点头,我顺着他们的意思将黑板上方程中的3改成了2,改好后转过身看看满脸挂着自信与成功喜悦的娃娃们。不!有人摇头了,还有人兴奋地举手了,静静地等待后有人有思考了!还有人没忍住说出了“乘法分配律”。我依旧选择了一个一直保持端正坐姿的孩子,并告诉大家我选她的理由,新一道方程便出来了,“能看懂吗?”其实这两道方程是一样的;其实这是乘法分配律。“这条算式中的每个数表示什么?每一步求的是什么?”依次解读后再来场解方程赛,这次让我们一起动手算,动静结合也让你们不觉得重复吧。三个环节,孩子们始终投入,而我也觉得欣慰,这样的学习状态挺好!你们今天在数学课堂上的表现我很满意,进步喜人!不过练习的时间却已不太多了。课堂时间有限,我们终有取舍,重了分析与理解的铺设,可能尾就略草了,有一些遗憾也好,说明我们还有进步的空间!希望这样的学习能让你们有收获!《实际问题与方程》教学反思「篇二」实际问题与方程紧跟在用等式的性质解方程的后面,是在学生会简单的运用解方程,而去把实际问题抽象成方程的过程。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。例1,相对而言比较简单,但是对于学生却仍旧是一个不容易接受的难点,他们能够清楚的知道用4.21-0.06=4.15(m),但是却没办法把这样的式子用方程抽象概括出来。例1的教学,我是按照“求谁设谁”的思路来讲的。第一步,看一看求的是谁?学生很明显的就能够知道求的是原跳远记录,而求得是它,我们就把它设成x,而这个时候,我便教授了未知量,即我们不知道的量就是未知量,所以求谁,谁就是未知量。第二步,找关系。找的关系就是题目中告诉我们的。比原纪录多,在数学上就用到了四则运算的加,也就能够得到数学关系上的原纪录+超出部分=小明的成绩。最后列式,则把具体的数字带进去,原纪录是x,超出部分0.06,小明成绩4.21,列的式子也就变成了x+0.06=4.21。将实际问题与方程的解法来分步的教给学生,学生学起来明显的变得轻松,但是找未知量对学生而言还存在着一些困难。例如做一做中的“我们拿桶接了半小时,共接了1.8kg的水,求每分钟浪费多少水?”明明我们看来很简单的问题,学生却找不到未知量应该是什么,只有极少的同学能够知道要把每分钟浪费的水设成未知数x。这就让我意识到了,在方程里,有很多变化的问题,学生不能够把握,因此在设计下一节课的时候,我在一开始就让未知量在条件中变没了,组织学生根据之前积累的知识去寻找关系,具体设置的题目有这样差不多的几个:1、长方形的长是6m,面积是24平方米,宽是多少?2、小明走了半个小时,走了120m,小明每分钟走多少m?3、小红买了5只钢笔,花了24元,每支钢笔多少元?像这样的,未知量在问题中的,让学生直接去问题里面看,这个时候,考验学生的就变成了学生的积累情况了。1、考验的是面积的计算公式2、考验的是速度=路程÷时间3、考验的是单价=总价÷数量而对于题目中的“比去年高”、“超过原纪录”、“二倍”、“二倍少”……学生根据题意用加减乘除列式,学生掌握的情况则比较好。用方程解决生活中的实际问题,就是让学生找准未知数,读懂题目中的数量关系,而日常规律的积累也占据着十分重要的位置。所以,在做方程联系实际的时候,要加强学生对题意的理解,也要加强学生日常规律的积累,而找到关系去解方程更是要不断的去加强练习。《实际问题与方程》教学反思「篇三」《实际问题与一元一次方程》教学反思1本节课的教学设计侧重讲列方程解应用题的一般步骤,同时使学生初步感受到代数方法的优越性,从而激发学生学习的积极性。由于本节课是列方程解应用题的第一节课,只要学生能达到解题时步骤完整、格式正确就可以了。因此,本节课所选的例题及练习题中的等量关系均是学生比较熟悉的,易于接受的.《实际问题与一元一次方程》教学反思2调配问题中既有劳力调配问题,又有事物调配的问题,且这类问题的应用较广泛。由于这类问题都可用二元一次方程组来求解,因此较复杂的应用题应放到二元一次方程组的章节中去处理.基于上述原因,本教学过程设计时所安排的例题、练习题、及作业题均以用一元一次方程解决较简单为标准。《实际问题与一元一次方程》教学反思3求解有关浓度配比问题的应用题,关键是明确溶液“稀释”或“加浓”前后,哪些量不变,哪些量改变,从而建立等量关系。由实际问题引入的目的在于使学生从直观上理解溶液在“稀释”或“加浓”前后有关量的变与不变.从而为最终使有关浓度配比问题的应用题顺利求解铺平道路。《实际问题与一元一次方程》教学反思4本节公开课内容是一元一次方程的应用(工程与配套问题)。教学目标是会通过列方程解决“配套问题”和“工程问题”。教学的重、难点是能准确分析实际问题中的数量关系和等量关系,掌握列方程解决实际问题的一般步骤,现将本节课的得失总结如下:一、在教学设计上我通过两方面来突破重、难点:1、设计简单而对本节课有启发作用的前置作业让学生提前完成,使学生在上课前对要学的知识有一个初步的认识。2、利用列表分析的方法,形象直观地把已知和未知的条件找出来,有利学生分析理解和找等量关系。二、在教学过程中我采用小组交流与合作的模式:1、小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。这样有利发现问题,培养学生勇气、才能和个性,使学生思维更清晰。2、组外的交流,如果整个组的同学都完成老师布置的任务,则可以作为外援到其他组进行帮教,并利用加分的评价机制进行激励。通过这样的教学环节,既能对后进生进行帮扶,也能引领和鼓舞优生的学习积极性。这节课课堂学习气氛浓厚,讨论热烈,思维完全放开,有见地的结论不断涌现,达到了预期的教学目标。三、课堂应注意改进的方面有:1、把应用题的等量关系写出来不利于学生的思维发展,可以改成填空的形式。2、课堂容量不足,应把重点放在找等量关系和列方程上,解方程部分可省略,这样就可以增加题量。3、如果能把工作量变式为分数,能提升学生对工程问题的理解。4、提出问题以后,一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。以上都是有待改进地方。《实际问题与方程》教学反思「篇四」用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,教者在学生的数量关系的分析上还要多花时间,多帮助学生,“磨刀不误砍柴功”,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的主线贯穿在教学过程中。在复习了等式的性质后,出示了“看图列方程并解答”的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是我的最终目的,学生解答师生共同评价,在此我向学生抛出了问题:“你是根据什么关系来列方程的?”此时让学生初步感受到数量关系对列方程解决问题的重要。“那么,我们怎样写出数量关系式?”出示第2题复习题“根据条件,写出数量关系式。”学生通过这次的练习后,对解方程的已有了足够的经验储备,这时我不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。《实际问题与方程》教学反思「篇五」教学目标知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。难点:把数学问题转化为数学问题。关键:从积分表中找出等量关系。教具:投影仪。教法:探究、讨论、启发式教学。教学过程一、创设问题情境用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)二、引入课题教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:①用式子表示总积分能与胜、负场数之间的数量关系;②某队的胜场总分能等于它的负场总积分么?学生充分思考、合作交流,然后教师引导学生分析。师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?生:从最下面一行可以发现,负一场积1分。师:胜一场呢?生:2分(有的用算术法、有的用方程各抒己见)师:若一个队胜a场,负多少场,又怎样积分?生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14。师:问题②如何解决?学生通过计算各队胜、负总分得出结论:不等。师:你能用方程说明上述结论么?生:老师,没有等量关系。师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?生:老师,能不能试着让它们相等?师:伟大的发明都是在尝试中进行的,试试?生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)师:x表示什么?可以是分数么?由此你的出什么结论?生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。拓展如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。教师引导学生设未知数,列方程。学生试说。生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。三、巩固练习已知某山区的平均气温与该山的海拔高度的关系见表:海拔高度(单位:m)100200300400平均气温(单位:℃)2221.52120.520若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。四、课堂小结:让几个学生谈自己的收获,再让一个学生全面总结。五、布置作业:课本108页8、9题。六、教学反思本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。《实际问题与方程》教学反思「篇六」我主讲了一节七年级的数学:实际问题与一元一次方程课,现将教学反思整理如下;一、成功方面1、本节课设计成学案的形式,有利于体现学生的主体地位,让学生充分参与到教学过程中来。2、本节课的题目设计有利于学生理解商品销售问题中的标价、售价、进价、利润、利润率这些概念的含义及它们之间的关系,并能利用它们之间的关系来解题。3、我把教材中的探究问题分解成三道题目,有利于学生由浅入深地掌握本节课的重难点。4、教学方法采用学生先练教师后讲的模式,有利于培养学生的尝试意识,激发探究热情。二、不足方面1、对学生的学情把握不够好,简单问题强调、重复太多,耽误教学时间,没按预定的教学方案完成任务。2、在从算术方法解决商品销售问题过渡到用方程方法解决销售问题时,设计不太好,学生不能自觉利用方程知识来解决问题。3、思想理念放不开,对于探究问题可能有其他解法,实际上有学生也用了算术方法,但我没有给出评价,这样会挫伤学生学习的积极性。二、努力方向加强学习,厚积薄发;钻研教材,教法,一切教学活动的出发点都要把学生放在心上。《实际问题与方程》教学反思「篇七」用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型――方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025建筑装饰合同范书
- 洛阳理工学院《大型活动与宴会策划》2023-2024学年第一学期期末试卷
- 2024年某航空公司与旅客关于航班座位租赁的合同
- 2024年买卖合同担保条款在电子商务领域的应用与实践3篇
- 酒店铝合金装修施工合同
- 垃圾处理设施增项合同
- 商业设施工程款结算
- 劳动合同试用期延长与转正流程
- 2024年度钢材运输合同(铁路)2篇
- 2024年度创新型企业员工激励机制合同3篇
- 人音版一年级上册《我有一只小羊羔》课件1
- 常用急救药品
- 内科主治医师讲义
- 小学生简笔画社团活动记录
- 2023年生态环境综合行政执法考试备考题库(含答案)
- 现浇简支梁施工方案
- 体育经济学概论PPT全套教学课件
- 全球标准食品安全BRCGS第九版文件清单一览表
- 路基二工区涵洞施工台账
- 2022年中国人口与发展研究中心招聘应届生笔试备考题库及答案解析
- 单位负反馈系统校正自动控制原理课程设计
评论
0/150
提交评论