2025届浙江省公立寄宿学校高三最后一模数学试题含解析_第1页
2025届浙江省公立寄宿学校高三最后一模数学试题含解析_第2页
2025届浙江省公立寄宿学校高三最后一模数学试题含解析_第3页
2025届浙江省公立寄宿学校高三最后一模数学试题含解析_第4页
2025届浙江省公立寄宿学校高三最后一模数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省公立寄宿学校高三最后一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.2.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A.85 B.84 C.57 D.563.已知向量,,若,则与夹角的余弦值为()A. B. C. D.4.已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是()①与点距离为的点形成一条曲线,则该曲线的长度是;②若面,则与面所成角的正切值取值范围是;③若,则在该四棱柱六个面上的正投影长度之和的最大值为.A. B. C. D.5.如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()A. B. C. D.6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.7.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为()A. B. C.0 D.8.函数在上的大致图象是()A. B.C. D.9.下列不等式成立的是()A. B. C. D.10.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.11.已知函数的值域为,函数,则的图象的对称中心为()A. B.C. D.12.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]二、填空题:本题共4小题,每小题5分,共20分。13.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球的表面上.若球的表面积为则该三棱柱的侧面积为___________.14.在中,角A,B,C的对边分别为a,b,c,且,则________.15.函数的定义域是___________.16.函数过定点________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.18.(12分)已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.(1)求椭圆C的方程;(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.19.(12分)已知数列是各项均为正数的等比数列,,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,为数列的前项和,记,证明:.20.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.21.(12分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次数为.(1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.22.(10分)2019年9月26日,携程网发布《2019国庆假期旅游出行趋势预测报告》,2018年国庆假日期间,西安共接待游客1692.56万人次,今年国庆有望超过2000万人次,成为西部省份中接待游客量最多的城市.旅游公司规定:若公司某位导游接待旅客,旅游年总收人不低于40(单位:万元),则称该导游为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙家旅游公司各有导游40名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:分组频数(1)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?(2)从甲、乙两家公司旅游总收人在(单位:万元)的导游中,随机抽取3人进行业务培训,设来自甲公司的人数为,求的分布列及数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.2、A【解析】

先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.3、B【解析】

直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.【详解】依题意,,而,即,解得,则.故选:B.【点睛】本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.4、C【解析】

①与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;②当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;③设,,,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和.【详解】如图:①错误,因为,与点距离为的点形成以为圆心,半径为的圆弧,长度为;②正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是;③正确,设,则,即,在前后、左右、上下面上的正投影长分别为,,,所以六个面上的正投影长度之,当且仅当在时取等号.故选:.【点睛】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题.5、A【解析】

根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,∴,∵平面,平面,且与正方体的其余四个面所在平面均相交,∴,∴结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.6、B【解析】

因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.7、C【解析】

先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.8、D【解析】

讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.9、D【解析】

根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,,,错误;对于,在上单调递减,,错误;对于,,,,错误;对于,在上单调递增,,正确.故选:.【点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.10、D【解析】

由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.11、B【解析】

由值域为确定的值,得,利用对称中心列方程求解即可【详解】因为,又依题意知的值域为,所以得,,所以,令,得,则的图象的对称中心为.故选:B【点睛】本题考查三角函数的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为012、A【解析】

根据符号函数的解析式,结合f(x)的单调性分析即可得解.【详解】根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g(x)]=1,当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g(x)]=0,当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g(x)]=﹣1,综合有:sgn[g(x)]=sgn(x);故选:A.【点睛】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

只要算出直三棱柱的棱长即可,在中,利用即可得到关于x的方程,解方程即可解决.【详解】由已知,,解得,如图所示,设底面等边三角形中心为,直三棱柱的棱长为x,则,,故,即,解得,故三棱柱的侧面积为.故答案为:.【点睛】本题考查特殊柱体的外接球问题,考查学生的空间想象能力,是一道中档题.14、【解析】

利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,,即.故答案为:.【点睛】本题考查利用正弦定理实现边角互化,属基础题.15、【解析】

由于偶次根式中被开方数非负,对数的真数要大于零,然后解不等式组可得答案.【详解】解:由题意得,,解得,所以,故答案为:【点睛】此题考查函数定义域的求法,属于基础题.16、【解析】

令,,与参数无关,即可得到定点.【详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【点睛】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)点M的极坐标为或(2)【解析】

(1)令,由此求得的值,进而求得点的极坐标.(2)设出两点的极坐标,利用勾股定理求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设点M在极坐标系中的坐标,由,得,∵∴或,所以点M的极坐标为或(2)由题意可设,.由,得,.故时,的最大值为.【点睛】本小题主要考查极坐标的求法,考查极坐标下两点间距离的计算以及距离最值的求法,属于中档题.18、(1);(2)当=0时,点O到直线MN的距离为定值.【解析】

(1)的面积最大时,是短轴端点,由此可得,再由离心率及可得,从而得椭圆方程;(2)在直线斜率存在时,设其方程为,现椭圆方程联立消元()后应用韦达定理得,注意,一是计算,二是计算原点到直线的距离,两者比较可得结论.【详解】(1)因为在椭圆上,当是短轴端点时,到轴距离最大,此时面积最大,所以,由,解得,所以椭圆方程为.(2)在时,设直线方程为,原点到此直线的距离为,即,由,得,,,所以,,,所以当时,,,为常数.若,则,,,,,综上所述,当=0时,点O到直线MN的距离为定值.【点睛】本题考查求椭圆方程与椭圆的几何性质,考查直线与椭圆的位置关系,考查运算求解能力.解题方法是“设而不求”法.在直线与圆锥曲线相交时常用此法通过韦达定理联系已知式与待求式.19、(Ⅰ),;(Ⅱ)见解析【解析】

(Ⅰ)由,且成等差数列,可求得q,从而可得本题答案;(Ⅱ)化简求得,然后求得,再用裂项相消法求,即可得到本题答案.【详解】(Ⅰ)因为数列是各项均为正数的等比数列,,可设公比为q,,又成等差数列,所以,即,解得或(舍去),则,;(Ⅱ)证明:,,,则,因为,所以即.【点睛】本题主要考查等差等比数列的综合应用,以及用裂项相消法求和并证明不等式,考查学生的运算求解能力和推理证明能力.20、(Ⅰ)见解析.(Ⅱ).【解析】

(I)证明平面得出平面,根据面面垂直的判定定理得到结论;(II)当平面时,棱锥体积最大,建立空间坐标系,计算两平面的法向量,计算法向量的夹角得出答案.【详解】(I)证明:分别为的中点,,又平面平面,又平面平面平面(II),为定值当平面时,三棱锥的体积取最大值以为原点,以为坐标轴建立空间直角坐标系则,设平面的法向量为,则即,令可得平面是平面的一个法向量平面与平面所成角的正弦值为【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论