斯坦福:反思人工智能时代的隐私问题(英文版)_第1页
斯坦福:反思人工智能时代的隐私问题(英文版)_第2页
斯坦福:反思人工智能时代的隐私问题(英文版)_第3页
斯坦福:反思人工智能时代的隐私问题(英文版)_第4页
斯坦福:反思人工智能时代的隐私问题(英文版)_第5页
已阅读5页,还剩100页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

February2024

JenniferKing

CarolineMeinhardt

RethinkingPrivacyintheAIEra

PolicyProvocationsforaData-CentricWorld

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

Authors

JenniferKingisthePrivacyandDataPolicyFellowattheStanfordUniversity

InstituteforHuman-CenteredArtificialIntelligence(HAI).Aninternationally

recognizedexpertininformationprivacy,herresearchexaminesthepublic’s

understandingandexpectationsofonlineprivacyaswellasthepolicyimplicationsofemergingtechnologies,includingartificialintelligence.Herrecentresearch

exploresalternativestonoticeandconsent(withtheWorldEconomicForum),theimpactofCalifornia’snewprivacylaws,andmanipulativedesign(darkpatterns).

Shealsoco-directsthe

DarkPatternsTipLine

repositoryatStanford.PriortojoiningHAI,shewastheDirectorofConsumerPrivacyattheCenterforInternetandSocietyatStanfordLawSchoolfrom2018to2020.Dr.Kingcompletedherdoctoratein

informationmanagementandsystems(informationscience)attheUniversityofCalifornia,BerkeleySchoolofInformation.

CarolineMeinhardtisthepolicyresearchmanagerattheStanfordInstitutefor

Human-CenteredArtificialIntelligence(HAI),whereshedevelopsandoversees

policyresearchinitiatives.SheispassionateaboutharnessingAIgovernance

researchtoinformpoliciesthatensurethesafeandresponsibledevelopmentof

AIaroundtheworld—withafocusonresearchontheprivacyimplicationsofAI

development,theimplementationchallengesofAIregulation,andthegovernanceoflarge-scaleAImodels.PriortojoiningHAI,CarolineworkedasaChina-focusedconsultantandanalyst,managinganddeliveringin-depthresearchandstrategic

adviceregardingChina’sdevelopmentandregulationofemergingtechnologies

includingAI.SheholdsaMaster’sinInternationalPolicyfromStanfordUniversity,whereherresearchfocusedonglobalgovernancesolutionsforAI,andaBachelor’sinChineseStudiesfromtheUniversityofCambridge.

Acknowledgments

TheauthorswouldliketothankBrendaLeong,CobunZweifel-Keegan,JustinWest,KevinKlyman,andDanielZhangfortheirvaluablefeedback,NicoleTongandColeFordforresearchassistance,andJeaninaCasusi,JoeHinman,NancyKing,ShanaLynch,CarolynLehman,andMichiTurnerforpreparingthepublication.

Disclaimer

TheStanfordInstituteforHuman-CenteredArtificialIntelligence(HAI)isanonpartisanresearchinstitute,representingarangeofvoices.TheviewsexpressedinthisWhitePaperreflecttheviewsoftheauthors.

2

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

TableofContents

Authors2

Acknowledgments2

TableofContents3

ExecutiveSummary4

Chapter1:Introduction5

Chapter2:DataProtectionandPrivacy:

KeyConceptsandRegulatoryLandscape7

a.FairInformationPracticePrinciples:

Theframeworkbehinddataprotectionandprivacy9

b.GeneralDataProtectionRegulation:

The“globalstandard”fordataprotection10

c.U.S.StatePrivacyLaws:Fillingthefederalprivacyvacuum12

d.PredictiveAIvs.GenerativeAI:Aninflectionpoint

fordataprotectionregulation14

Chapter3:ProvocationsandPredictions17

a.DataisthefoundationofAIsystems,

whichwilldemandevergreateramountsofdata17

b.AIsystemsposeuniqueriskstobothindividualand

societalprivacythatrequirenewapproachestoregulation19

c.Dataprotectionprinciplesinexistingprivacylaws

willhaveanimplicit,butlimited,impactonAIdevelopment22

d.TheexplicitalgorithmicandAI-basedprovisionsin

existinglawsdonotsufficientlyaddressprivacyrisks25

e.Closingthoughts29

Chapter4:SuggestionsforMitigatingthePrivacyHarmsofAI31

Suggestion1:Denormalizedatacollectionbydefault33

Suggestion2:FocusontheAIdatasupplychainto

improveprivacyanddataprotection36

Suggestion3:Flipthescriptonthemanagementofpersonaldata41

Chapter5:Conclusion45

Endnotes46

3

4

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

ExecutiveSummary

Inthispaper,wepresentaseriesofargumentsandpredictionsabouthowexistingandfutureprivacyanddataprotectionregulationwillimpactthedevelopmentanddeploymentofAIsystems.

DataisthefoundationofallAIsystems.Goingforward,AIdevelopmentwillcontinuetoincreasedevelopers’hungerfortrainingdata,fuelinganevengreaterracefordataacquisitionthanwehavealreadyseeninpastdecades.

Largelyunrestraineddatacollectionposesuniqueriskstoprivacythatextendbeyondtheindividuallevel—theyaggregatetoposesocietal-levelharmsthatcannotbeaddressedthroughtheexerciseofindividualdatarightsalone.

Whileexistingandproposedprivacylegislation,groundedinthegloballyacceptedFairInformationPractices

(FIPs),implicitlyregulateAIdevelopment,theyarenotsufficienttoaddressthedataacquisitionraceaswellastheresultingindividualandsystemicprivacyharms.

Evenlegislationthatcontainsexplicitprovisionsonalgorithmicdecision-makingandotherformsofAIdoesnotprovidethedatagovernancemeasuresneededtomeaningfullyregulatethedatausedinAIsystems.

WepresentthreesuggestionsforhowtomitigatetheriskstodataprivacyposedbythedevelopmentandadoptionofAI:

1.Denormalizedatacollectionbydefaultbyshiftingawayfromopt-outtoopt-indatacollection.

Datacollectorsmustfacilitatetruedataminimizationthrough“privacybydefault”strategiesandadopttechnicalstandardsandinfrastructureformeaningfulconsentmechanisms.

2.FocusontheAIdatasupplychaintoimproveprivacyanddataprotection.Ensuringdataset

transparencyandaccountabilityacrosstheentirelifecyclemustbeafocusofanyregulatorysystemthataddressesdataprivacy.

3.Flipthescriptonthecreationandmanagementofpersonaldata.Policymakersshouldsupportthedevelopmentofnewgovernancemechanismsandtechnicalinfrastructure(e.g.,dataintermediariesanddatapermissioninginfrastructure)tosupportandautomatetheexerciseofindividualdatarightsand

preferences.

5

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

Chapter1:Introduction

Intheopeningmonthsof2024,artificialintelligence

(AI)issquarelyinthesightsofregulatorsaroundthe

globe.TheEuropeanUnionissettofinalizeitsAIAct

laterthisyear.Otherpartsoftheworld,fromtheUnitedKingdomtoChina,arealsocontemplatingand,insomecasesalreadyimplementing,wide-rangingAIregulation.IntheUnitedStates,arecentmilestoneExecutive

OrderonAImarkedtheclearestsignalyetthatthe

Bidenadministrationispoisedtotakeacomprehensive

approachtoAIgovernance.1Withfederallegislationto

regulateAIyettopass,agrowingnumberoffederal

agenciesandstatelegislatorsareclarifyinghowexistingregulationrelatestoAIwithintheirjurisdictionalareas

andproposingAI-specificregulation.2

WhilemuchofthediscussionintheAIregulatory

spacehascenteredondevelopingnewlegislationtodirectlyregulateAI,therehasbeencomparativelylittlediscourseonthelawsandregulationsthatalready

impactmanyformsofcommercialAI.Inthiswhite

paper,wefocusontheintersectionofAIregulation

withtwospecificareas:privacyanddataprotection

legislation.TheconnectivetissuebetweenprivacyandAIisdata:NearlyallformsofAIrequirelargeamountsoftrainingdatatodevelopclassificationordecisionalcapabilities.WhetherornotanAIsystemprocesses

orrendersdecisionsaboutindividuals,ifasystem

includespersonalinformation,particularlyidentifiablepersonalinformation,aspartofitstrainingdata,itislikelytobesubject—atleastinpart—toprivacyanddataprotectionregulations.

Wemakeasetofargumentsandpredictionsabout

howexistingandfutureprivacyanddataprotection

regulationsintheUnitedStatesandtheEUwillimpactthedevelopmentanddeploymentofAIsystems.We

startwiththefundamentalassumptionthatAIsystemsrequiredata—massiveamountsofit—fortraining

purposes.Itisthisneedfordata,asbestevidencedbydata-hungrygenerativeAIsystemssuchasChatGPT,thatwepredictwillfuelanevengreaterracefordataacquisitionthanwe’vewitnessedoverthelastdecadesofthe“BigData”era.Thisneedwillinturnimpactbothindividualandsocietalinformationprivacy—notjust

throughthedemandfordata,butalsobytheimpactsthisneedwillhaveonspecificissuessuchasconsent,provenance,andtheentiredatasupplypipelineandlifecyclemoregenerally.3

WemoveontoexaminingAI’suniquerisksto

consumerandpersonalprivacy,which—unlikemany

technology-fueledprivacyharmsthatprimarilyimpactindividuals—aggregatetoposesocietal-levelrisks

thatexistingregulatoryprivacyframeworksarenot

designedtoaddress.Wearguethatexistinggovernanceapproaches,whicharebasedpredominantlyonthe

globallyacceptedFairInformationPractices(FIPs),

willnotbesufficienttoaddressthesesystemicprivacyrisks.Finally,weclosewithsuggestedsolutionsfor

mitigatingtheseriskswhilealsoofferingnewdirectionsforregulationinthisarea.

What’satStake:TheFutureof

BothPrivacyandAI

DataisakeycomponentforallAIsystems—todate,themostsignificantimprovementsinAIsystems

havebeentiedtoaccesstoverylargeamountsof

trainingdata.Thisfactdoesnotnecessarilymean

thatalladvancementsinAIwillrequiremassive

amountsofdata;aswediscusslater,someresearchersareobservingqualityversusquantitytrade-offs

6

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

thatindicatemoremaynotreliablymeanbetter.

Regardless,wearepresentlyataninflectionpointwherethereisconsiderablepressureforcompaniestobuildmassivetrainingdatasetstomaintaintheircompetitiveadvantage.

Aprimaryconcernmotivatingthispaperisthatdespitethefactthatexistingandproposedprivacyanddata

protectionlawsonbothsidesoftheAtlanticwillhaveanimpactonAI,theywillnotsufficientlyregulate

thedatasourcesthatAIsystemsrequireinaway

thatwillsubstantivelypreserve,orevenimprove,our

dataprivacy.Inthispaper,weexploreseveralrelatedconcerns:

1.Theframeworkthatunderliesdataprotectionlawshasweaknessesthatwillnotgiveindividualsthetoolstheyneedtopreservetheirdataprivacyas

AIadvances;

2.Italsofailstoaddresssocietal-levelprivacyrisks;

3.PolicymakersmustexpandthescopeofhowweapproachprivacyanddataprotectiontoaddresstheseweaknessesandbolsterdataprivacyinanincreasinglyAIdominantworld.

Westartfromtheassumptionthatformostofus

thecurrentstateofourdataprivacyrangesfrom

suboptimaltodismal.IntheUnitedStates,pollshaveshownthatthepubliclargelyfeelsasiftheyhavenocontroloverthedatathatiscollectedaboutthem

online;4thatthebenefitstheyreceiveinexchangefor

theirdataarenotalwaysworththebargainoffree

access;andthatinmostdatarelationships,consumershavenoabilitytonegotiatemorefavorableterms—

andinmanyinstances,believetheyarelockedinorhavefewifanyalternatives.5

Inshort,aswemovetowardafutureinwhichAI

developmentcontinuestoincreasedemandsfor

data,dataprotectionregulationthatatbestmaintainsthestatusquodoesnotinspireconfidencethatthe

datarightswehavewillpreserveourdataprivacy

asthetechnologyadvances.Infact,webelieve

thatcontinuingtobuildanAIecosystematopthis

foundationwilljeopardizewhatlittledataprivacywehavetoday.

Thispaperfocusesonthecoreissuesthatwebelieverequirethemostattentiontoaddressthisstateof

affairs.Itdoesnotclaimtoaddressorsolveeverything.Butwedobelievethatiftheseissuesaren’tsufficientlyacknowledgedandaddressedthroughregulationandenforcement,weleaveourselvesopentoasituation

whereprivacyprotectioncontinuestodeteriorate.

Therearemanyworriesattachedtohowourworld

willchangeasitcontinuestoembraceAI.Concernsrelatedtobiasanddiscriminationhavealready

generatedextensivedebateanddiscussion,andwearguethatasubstantiallossofdataprivacyisanothermajorriskthatdeservesourheightenedconcern.

7

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

Chapter2:DataProtectionandPrivacy:

KeyConceptsandRegulatoryLandscape

ThelasttwoyearshaveseengroundbreakingadvancesinAI,aperiodinwhichgenerativeAItoolsbecame

widelyavailable,inspiringandalarmingmillionsof

peoplearoundtheworld.Largelanguagemodels

(LLMs)suchasGPT-4,PaLM,andLlama,aswellas

AIimagegenerationsystemssuchasMidjourneyandDALL-E,havemadeatremendouspublicsplash,whilemanyotherlessheadline-grabbingformsofAIalso

continuedtoadvanceatbreakneckspeed.

WhilerecognizingtherecentdominanceofLLMsinpublicdiscourse,inthispaperweconsiderthedataprivacyandprotectionimplicationsofawiderarrayofAIsystems,definedmorebroadlyas“engineeredormachine-basedsystem[s]thatcan,foragivensetofobjectives,generateoutputssuchaspredictions,recommendations,ordecisionsinfluencingrealor

virtualenvironments.”6Forexample,weconsidera

rangeofpredictiveAIsystems,suchasthosebasedonmachinelearning,thatanalyzevastamountsof

datatomakeclassificationsandpredictions,rangingfromfacialrecognitionsystemstohiringalgorithms,criminalsentencingalgorithms,behavioraladvertisingandprofiling,andemotionrecognitiontools,to

nameafew.Thesesystemsoperatewithvarying

levelsofautonomy,with“automateddecision-

making”referringtoAIsystemsmakingdecisions(suchasawardingaloanorhiringanewemployee)

withoutany,orminimal,humaninvolvement.7

WhilegenerativeAIsystemsalsorelyonpredictive

processes,thosesystemsultimatelyfocusoncreatingnewcontentrangingfromtexttoimages,video,andaudioastheiroutput.

Whilesomepolicymakersarekeentodemonstratethattheyareassuagingthepublic’sgrowingconcerns

abouttherapiddevelopmentand

deploymentofAIbyintroducingnew

legislation,thereisagrowingdebate

overwhetherexistinglawsprovidesufficientprotectionandoversightofAIsystems.

Inresponsetothesewidelypublicizeddevelopments,

bothpolicymakersandthegeneralpublichave

calledforregulatingAItechnologies.Since2020,countriesaroundtheworldhavebegunpassing

AI-specificlegislation.8WhiletheEUfinalizesthe

parametersofitsAIAct,thebloc’sattempttoprovideoverarchingregulationofAItechnologies,theUnitedStatespresentlylacksageneralizedapproachtoAI

regulation,thoughmultiplefederalagencieshavereleasedpolicystatementsassertingtheirauthorityoverAIsystemsthatproduceoutputsinviolation

ofexistinglaw,suchascivilrightsandconsumer

protectionstatutes.9SeveralU.S.statesand

municipalitieshavealsotackledgeneralconsumerregulationofAIsystems.10

8

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

Whilesomepolicymakersarekeentodemonstrate

thattheyareassuagingthepublic’sgrowingconcernsabouttherapiddevelopmentanddeploymentofAI

byintroducingnewlegislation,thereisagrowing

debateoverwhetherexistinglawsprovidesufficient

protectionandoversightofAIsystems.Aswediscussinthiswhitepaper,privacyanddataprotectionlaws

intheUnitedStatesandtheEUalreadydothework

ofregulatingsome—thoughnotall—aspectsofAI.

Whethertheseexistinglaws,andproposedonesbasedontheseframeworks,areadequatetoanticipateand

respondtoemergentformsofAIwhilealsoaddressingprivacyrisksandharmsisaquestionwewilladdresslaterinthispaper.

Beforewedelveintothedetailsofourarguments,weprovideabriefoverviewofthepresentstateofdataprotectionandprivacyregulationsintheEUandtheUnitedStatesthatimpactAIsystems,startingwiththefoundationalFairInformationPractices(FIPs).Thosefamiliarwiththeseregulationsmaywishtoskipaheadtothenextchapter.

DataPrivacyandDataProtection

Dataprivacyanddataprotectionaresometimesusedinterchangeablyincasualconversation.Whilethesetermsarerelatedandhavesomeoverlap,theydifferinsignificantways.

Dataprivacyisprimarilyconcernedwithwhohasauthorizedaccesstocollect,process,and

potentiallyshareone’spersonaldata,andtheextenttowhichonecanexercisecontroloverthataccess,includingbyoptingoutofdatacollection.Theterm’sscopeisfairlybroad,asitpertainsnotjustto

personaldatabuttoanykindofdatathat,ifaccessedbyothers,wouldbeseenasinfringingonone’srighttoaprivatelifeandpersonalautonomy.

Privacyisoftendescribedintermsofpersonalcontroloverone’sinformation,thoughthisconceptionhasbeenchallengedbytheincreasinglossofcontrolthatmanyhaveovertheirdata.Butitisthis

notionofpersonalcontrolthatunderliesbothexistingprivacyregulationsandframeworks.Whatis

considered“private”isalsocontextuallycontingent,inthatdatasharedinonecontextmaybeviewedasappropriatebyanindividualordatasubject(e.g.,sharingone’srealtimelocationdatawithafriend)butnotinanother(e.g.,athirdpartycollectingone’srealtimelocationdataandusingitforadvertisingpurposeswithoutexplicitpermission).Therelationalnatureofdatahasalsochallengedtheideaof

privacyaspersonalcontrol,asdatathatissocialinnature(e.g.,sharedsocialmediaposts)ordatathatcanrevealbothbiologicaltiesandethnicidentities(e.g.,geneticdata)continuetogrow.

9

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

DataPrivacyandDataProtection(cont’d)

Dataprotectionreferstotheactofsafeguardingindividuals’personalinformationusingasetof

proceduralrights,whichincludesensuringthatdataisprocessedfairly,forspecifiedpurposes,and

collectedonthebasisofoneofsixacceptedbasesforprocessing.11Consentisthestrictestbasisand

allowsindividualstowithdrawitafterthefact.Bycontrast,legitimateinterestprovidesthegreatest

latitude—thislegalgroundforprocessingdataallowsprocessorstojustifydataprocessingonthebasisofthisdatabeingneededtocarryouttasksrelatedtotheirbusinessactivity.Dataprocessorsmuststillrespectindividuals’fundamentaldataprotectionrights,suchasprovidingnoticewhendataiscollected,givingaccesstoone’scollectedinformation,providingthemeanstocorrecterrors,delete,ortransferit(dataportability)tootherprocessors,andaffordingtherighttoobjecttotheprocessingitself.Butthereisabiastowardacceptingasagiventhecollectibilityofsomeformsofpersonaldatabydefault.

TheEUformallydistinguishesbetweenpersonalprivacy(i.e.,respectforanindividual’sprivatelife)and

dataprotection,enshriningeachinitsEuropeanCharterofFundamentalRights.Nevertheless,there

areareasofoverlapandtheconceptscomplementeachother.Whendataprotectionprinciplesdonotapplybecausethecollectedinformationisnotpersonaldata(e.g.,anonymizedbodyscannerdata),thefundamentalrighttoprivacyappliesasthecollectionofbodilyinformationaffectsaperson’sindividualautonomy.Conversely,dataprotectionprinciplescanensurelimitsonpersonaldataprocessing,evenwhensuchprocessingisnotthoughttoinfringeuponprivacy.12

a.FairInformationPractice

Principles:Theframework

behinddataprotectionand

privacy

Mostmodernprivacylegislation,atitscore,is

basedontheFairInformationPractices(FIPs),a

50-plus-year-oldsetofprinciplesthatareacceptedaroundtheglobeasthefundamentalframeworkforprovidingindividualswithdueprocessrightsfortheir

personaldata.13ProposedasaU.S.federalcodeoffair

informationpracticesforautomatedpersonaldatasystemsintheearly1970s,theFIPsintroducedfive

safeguardrequirementsregardingpersonalprivacyasameansofensuring“informationaldueprocess.”14Theyfocusontheobligationsofrecord-keeping

organizationstoallowindividualstoknowabout,

preventalternativeusesof,andcorrectinformation

collectedaboutthem.15AspolicyexpertMark

MacCarthydescribes,“Allthesemeasuresworkedtogetherasacoherentwholetoenforcetherightsofindividualstocontrolthecollectionanduseofinformationaboutthemselves.”16

Ratherthanframinginformationprivacyasa

fundamentalhumanright,asboththeUnitedNationsUniversalDeclarationofHumanRightsandthe

10

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

EuropeanCharterofFundamentalRightsdowitha

moregeneralconceptionofprivacy,theFIPsoutline

asetofrulesandobligationsbetweentheindividual

(datasubject)andtherecord-keeper(dataprocessor).17TheFIPsweredraftedaroundacoreassumptionthatthestatehasalegitimateneedtocollectdataabout

itscitizensforadministrativeandrecord-keepingpurposes.18Thisassumption—thatdatacollectionisnecessaryandappropriatefortheworkingsof

themodernstatebutmustbedonefairlyandwithproceduralsafeguardsinplace—wasincorporatedintosubsequentrevisionsoftheFIPs,evenastheywereincreasinglyappliedtotheprivatesector.

Themostinternationallyinfluentialversion,developed

bytheOrganisationforEconomicCooperation

andDevelopment(OECD)in1980andamendedin

2013,consolidatesandexpandstheoriginalFIPs

intoeightprinciplescoveringcollectionlimitation,

dataquality,purposespecification,uselimitation,

securitysafeguards,openness,individualparticipation,andaccountability.19Theguidelinesreflectabroad

internationalconsensusonhowtoapproach

privacyprotectionthathastranslatedintoapolicy

convergencearoundenshriningtheFIPsasacorepartofinformationprivacylegislationaroundtheworld.20

Despitehavingbeenconceivedlongbeforethe

emergenceofthecommercialinternet,letalone

socialmediaplatformsandgenerativeAItools,core

componentsoftheFIPs,suchasdataminimization

andpurposelimitation21,directlyimpacttoday’sAI

systemsbylimitinghowbroadlycompaniescan

repurposedatacollectedforonecontextorpurposetocreateortrainnewAIsystems.TheEU’sGeneralDataProtectionRegulation(GDPR),aswellasCalifornia’s

privacyregulationsandtheproposedAmericanDataPrivacyandProtectionAct(ADPPA),reliesheavilyontheseprinciples.Theseregulations’attemptstoclarify

TheFIPsweredraftedarounda

coreassumptionthatthestatehasalegitimateneedtocollectdataaboutitscitizensforadministrativeand

record-keepingpurposes.

theapplicationoftheFIPstoprivacycontrolsamid

exponentiallyincreasingvolumesofonlineconsumersandcommercialdatashedfurtherlightontheimpactofprivacyregulationonAI.

b.GeneralDataProtectionRegulation:The“global

standard”fordataprotection

Passedin2016andineffectasof2018,theGeneralDataProtectionRegulationistheEU’sattemptto

bothupdatethe1995DataProtectionDirectiveandharmonizethepreviouspatchworkoffragmentednationaldataprivacyregimesacrossEUmember

countriesandtoenablestrongerenforcementof

Europeans’datarights.22Atitscore,theGDPRis

centeredonpersonaldata,whichisdefinedas“any

informationrelatingtoanidentifiedoridentifiable

naturalperson.”23Itgrantsindividuals(“datasubjects”)rightsregardingtheprocessingoftheirpersonaldata,suchastherighttobeinformedandalimitedrighttobeforgotten,andguideshowbusinessescanprocesspersonalinformation.Itisarguablythemostsignificantdataprotectionlegislationintheworldtoday,spurringcopycatlegislationandimpactingtheframingofdataprotectionaroundtheglobe.AsaresultoftheGDPR’sdirectapplicabilitytoAIanditsdominanceacross

11

stanforduniversityHuman-centered

ArtificialIntelligence

WhitePaper

RethinkingPrivacyintheAIEra

theglobe,dataprotectionandprivacyconcernsarelargelyabsentfromtheEU’sAIAct.

TheGDPRcontainsseveralprovisionsthatapply

toAIsystems,eventhoughitdoesnotspecifically

includetheterm“artificialintelligence.”Instead,

Article22providesprotectionstoindividualsagainstdecisions“basedsolelyonautomatedprocessing”ofpersonaldatawithouthumanintervention,alsocalledautomateddecision-making(ADM).24Itenshrines

therightofindividualsnottobesubjecttoADM

wherethesedecisionscouldproduceanadverse

legalorsimilarlysignificanteffectonthem.Giventhewides

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论