辽宁省普通高中学2025届高考数学必刷试卷含解析_第1页
辽宁省普通高中学2025届高考数学必刷试卷含解析_第2页
辽宁省普通高中学2025届高考数学必刷试卷含解析_第3页
辽宁省普通高中学2025届高考数学必刷试卷含解析_第4页
辽宁省普通高中学2025届高考数学必刷试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省普通高中学2025届高考数学必刷试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种2.设命题函数在上递增,命题在中,,下列为真命题的是()A. B. C. D.3.复数的共轭复数为()A. B. C. D.4.已知函数的图象如图所示,则下列说法错误的是()A.函数在上单调递减B.函数在上单调递增C.函数的对称中心是D.函数的对称轴是5.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.6.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.7.空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上(指数)的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好8.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36 B.72 C. D.9.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题11.已知是虚数单位,若,则()A. B.2 C. D.1012.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙二、填空题:本题共4小题,每小题5分,共20分。13.设是公差不为0的等差数列的前项和,且,则______.14.如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为________.15.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____.16.在面积为的中,,若点是的中点,点满足,则的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.18.(12分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上.19.(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.20.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.21.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.22.(10分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.2、C【解析】

命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.【详解】解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.命题:在中,在上单调递减,所以,是真命题.则下列命题为真命题的是.故选:C.【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3、D【解析】

直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.4、B【解析】

根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.【详解】由图象可得,函数的周期,所以.将点代入中,得,解得,由,可得,所以.令,得,故函数在上单调递减,当时,函数在上单调递减,故A正确;令,得,故函数在上单调递增.当时,函数在上单调递增,故B错误;令,得,故函数的对称中心是,故C正确;令,得,故函数的对称轴是,故D正确.故选:B.【点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.5、C【解析】

根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.6、B【解析】

画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.7、C【解析】

结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.【详解】对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.故选:【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.8、A【解析】

根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,,所以,又,所以,由等差数列的性质可得.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.9、A【解析】

作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.10、B【解析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.11、C【解析】

根据复数模的性质计算即可.【详解】因为,所以,,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.12、A【解析】

利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】

先由,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.14、【解析】

设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.15、【解析】

两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.【详解】解:根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,即方程在区间上有解,设函数,其导数,又由,可得:当时,为减函数,当时,为增函数,故函数有最小值,又由;比较可得:,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是;故答案为:;【点睛】本题利用导数研究函数在某区间上最值求参数的问题,函数零点问题的拓展.由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.16、【解析】

由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.(Ⅱ)得到,得到函数值域.【详解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,则,,,若①③成立,则,,不合题意,若②③成立,则,,与③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由题意得,,所以函数的值域为.【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.18、(1);(2)见解析.【解析】

(1)由已知条件得出、的值,进而可得出的值,由此可求得椭圆的方程;(2)设点,可得,且,,求出直线的斜率,进而可求得直线与的方程,将直线直线与的方程联立,求出点的坐标,即可证得结论.【详解】(1)由题设,得,所以,即.故椭圆的方程为;(2)设,则,,.所以直线的斜率为,因为直线、的斜率的积为,所以直线的斜率为.直线的方程为,直线的方程为.联立,解得点的纵坐标为.因为点在椭圆上,所以,则,所以点在轴上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线的证明,考查计算能力与推理能力,属于中等题.19、(1)(2)【解析】

(1)因为,可得,即可求得答案;(2)分别设、的斜率为和,切点,,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,进而求得的面积.【详解】(1),,解得,抛物线的方程为.(2)由题意可知,、的斜率都存在,分别设为和,切点,,过点的抛物线的切线:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切线的方程为,点到切线的距离为,,即的面积为.【点睛】本题主要考查了求抛物线方程和抛物线中三角形面积问题,解题关键是掌握抛物线定义和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式20、(1)证明见解析(2)【解析】

(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,则,,,,,,,∵,∴,设是平面的一个法向量则,即,取得∴∴直线与平面所成的正弦值为【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论