版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市度嘉定区高三最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数和复数,则为A. B. C. D.2.设全集,集合,,则()A. B. C. D.3.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A. B. C. D.4.一个几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.5.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.6.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为7.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是()A.1 B.-3 C.1或 D.-3或8.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是()A. B. C. D.9.已知复数,则的虚部是()A. B. C. D.110.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()A. B. C. D.11.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A. B.C. D.12.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本题共4小题,每小题5分,共20分。13.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,则a2=____.14.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.15.已知实数满足则点构成的区域的面积为____,的最大值为_________16.函数的图象在处的切线与直线互相垂直,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.(Ⅰ)若,求曲线的方程;(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.18.(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.19.(12分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若在上恒成立,求实数的取值范围.20.(12分)已知a>0,证明:1.21.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.22.(10分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.2、B【解析】
可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.3、A【解析】
根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,,此为球的半径,.故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.4、B【解析】
由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5、B【解析】
画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.6、C【解析】
根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.7、D【解析】
由题得,解方程即得k的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2)点到直线的距离.8、B【解析】
根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【详解】由图象可得,函数的最小正周期为,,,则,,取,,则,,,可得,当时,.故选:B.【点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.9、C【解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.10、B【解析】
连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.11、A【解析】
求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.12、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.14、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.15、811【解析】
画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.16、1.【解析】
求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)和.;(Ⅱ)证明见解析;(Ⅲ).【解析】
(Ⅰ)由,可得,解出即可;(Ⅱ)设点,设直线,与椭圆方程联立可得:,利用,根与系数的关系、中点坐标公式,证明即可;(Ⅲ)由(Ⅰ)知,曲线,且,设直线的方程为:,与椭圆方程联立可得:,利用根与系数的关系、弦长公式、三角形的面釈计算公式、基本不等式的性质,即可求解.【详解】(Ⅰ)由题意:,,解得,则曲线的方程为:和.(Ⅱ)证明:由题意曲线的渐近线为:,设直线,则联立,得,,解得:,又由数形结合知.设点,则,,,,,即点在直线上.(Ⅲ)由(Ⅰ)知,曲线,点,设直线的方程为:,联立,得:,,设,,,,面积,令,,当且仅当,即时等号成立,所以面积的最大值为.【点睛】本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆的相交问题、弦长公式、三角形的面积计算公式、基本不等式的性质,考查了推理论证能力与运算求解能力,属于难题.18、(1);(2).【解析】
(1)由可得出,两式作差可求得数列的通项公式;(2)求得,利用数列的单调性的定义判断数列的单调性,由此可求得数列的最小项的值.【详解】(1)对任意的,由得,两式相减得,因此,数列的通项公式为;(2)由(1)得,则.当时,,即,;当时,,即,.所以,数列的最小项为.【点睛】本题考查利用与的关系求通项,同时也考查了利用数列的单调性求数列中的最小项,考查推理能力与计算能力,属于中等题.19、(1);(2)【解析】
(1)当时,将原不等式化简后两边平方,由此解出不等式的解集.(2)对分成三种情况,利用零点分段法去绝对值,将表示为分段函数的形式,根据单调性求得的取值范围.【详解】(1)时,可得,即,化简得:,所以不等式的解集为.(2)①当时,由函数单调性可得,解得;②当时,,所以符合题意;③当时,由函数单调性可得,,解得综上,实数的取值范围为【点睛】本小题主要考查含有绝对值不等式的解法,考查不等式恒成立问题的求解,属于中档题.20、证明见解析【解析】
利用分析法,证明a即可.【详解】证明:∵a>0,∴a1,∴a1≥0,∴要证明1,只要证明a1(a)1﹣4(a)+4,只要证明:a,∵a1,∴原不等式成立.【点睛】本题考查不等式的证明,着重考查分析法的运用,考查推理论证能力,属于中档题.21、(1)1(2)【解析】
(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.解法二:可利用导数,先证明不等式,,,,令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.【详解】(1)由题意,得,,由,…①,得,令,则,因为,所以在单调递增,又,所以当时,,单调递增;当时,,单调递减;所以,当且仅当时等号成立.故方程①有且仅有唯一解,实数的值为1.(2)解法一:令(),则,所以当时,,单调递增;当时,,单调递减;故.令(),则.(i)若时,,在单调递增,所以,满足题意.(ii)若时,,满足题意.(iii)若时,,在单调递减,所以.不满足题意.综上述:.解法二:先证明不等式,,,…(*).令,则当时,,单调递增,当时,,单调递减,所以,即.变形得,,所以时,,所以当时,.又由上式得,当时,,,.因此不等式(*)均成立.令(),则,(i)若时,当时,,单调递增;当时,,单调递减;故.(ii)若时,,在单调递增,所以.因此,①当时,此时,,,则需由(*)知,,(当且仅当时等号成立),所以.②当时,此时,,则当时,(由(*)知);当时,(由(*)知).故对于任意,.综上述:.【点睛】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Linux系统管理及应用项目式教程课件 项目6 管理软件包与进程
- 班主任工作范文小学班主任工作计划三
- 高二上学期数学人教A版(2019)期末模拟测试卷A卷(含解析)
- 网络安全基础技术应用知到智慧树章节测试课后答案2024年秋深圳信息职业技术学院
- 《福利国家》课件
- 2025届福建闽侯第六中学高三最后一卷数学试卷含解析
- 广东普宁华侨中学2025届高考语文一模试卷含解析
- 两个矩阵的等价、相似、合同的关系
- 河南省舞钢市第二高级2025届高三第二次模拟考试英语试卷含解析
- 放弃治疗协议书 篇三
- 北师大版四年级上册书法练习指导-教案
- 《规律作息-健康睡眠》主题班会课件
- Unit5 Our New rooms Lesson1(教学设计)2024-2025学年重大版英语五年级上册
- 2024至2030年中国采棉机行业深度调研及投资战略分析报告
- 英语B级单词大全
- 清醒俯卧位通气护理专家共识
- 人教版部编道德与法治九上1.1《坚持改革开放》说课稿
- 低压不停电换表接插件技术规范
- 2024版乌鲁木齐二手房买卖合同
- 跨学科教学设计-《轴对称图形》
- 脑卒中患者深静脉静脉血栓预防
评论
0/150
提交评论