上海市浦东区2025届高考数学押题试卷含解析_第1页
上海市浦东区2025届高考数学押题试卷含解析_第2页
上海市浦东区2025届高考数学押题试卷含解析_第3页
上海市浦东区2025届高考数学押题试卷含解析_第4页
上海市浦东区2025届高考数学押题试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市浦东区2025届高考数学押题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.2.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤3.()A. B. C. D.4.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.85.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.6.若的展开式中的系数为150,则()A.20 B.15 C.10 D.257.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-38.复数满足,则复数等于()A. B. C.2 D.-29.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.210.如图所示的程序框图输出的是126,则①应为()A. B. C. D.11.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A. B. C. D.12.已知且,函数,若,则()A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且,则实数的值是__________.14.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.15.在△ABC中,a=3,,B=2A,则cosA=_____.16.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点.18.(12分)已知函数,函数.(Ⅰ)判断函数的单调性;(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.19.(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.20.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.21.(12分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.22.(10分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1.(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.2、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C3、D【解析】

利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.4、A【解析】

由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5、B【解析】

分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.6、C【解析】

通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.7、D【解析】

设,,设:,联立方程得到,计算得到答案.【详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.8、B【解析】

通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,∴,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题.9、B【解析】

画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.10、B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.∵S=2+22+…+21=121,故①中应填n≤1.故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11、B【解析】

根据新运算的定义分别得出◆2020和2020★2018的值,可得选项.【详解】由()★★,得(+2)★★,又★,所以★,★,★,,以此类推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此类推,◆2020,所以(◆2020)(2020★2018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.12、C【解析】

根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,∴,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∵=(1,2),=(x,1),则=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.点睛:由向量的数乘和坐标加减法运算求得,然后利用向量共线的坐标表示列式求解x的值.若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=1,∥⇔a1b2﹣a2b1=1.14、【解析】

求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.15、【解析】

由已知利用正弦定理,二倍角的正弦函数公式即可计算求值得解.【详解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案为.【点睛】本题主要考查了正弦定理,二倍角的正弦函数公式在解三角形中的应用,属于基础题.16、1【解析】

根据正态分布对称性,求得质量低于的袋数的估计值.【详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:【点睛】本小题主要考查正态分布对称性的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)【解析】

(1)利用,代入可求;消参可得直角坐标方程.(2)将的参数方程代入的直角坐标方程,与有交点,可得,解不等式即可求解.【详解】(1)(2)将的参数方程代入的直角坐标方程得:与有交点,即【点睛】本题考查了极坐标方程与普通方程的转化、参数方程与普通方程的转化、直线与圆的位置关系的判断,属于基础题.18、(1)故函数在上单调递增,在上单调递减;(2).【解析】试题分析:(Ⅰ)根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性.(Ⅱ)分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求.试题解析:(I)由题意得,,∴.当时,,函数在上单调递增;当时,令,解得;令,解得.故函数在上单调递增,在上单调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增.不妨设,又函数单调递减,所以原问题等价于:当时,对任意,不等式恒成立,即对任意,恒成立.记,由题意得在上单调递减.所以对任意,恒成立.令,,则在上恒成立.故,而在上单调递增,所以函数在上的最大值为.由,解得.故实数的最小值为.19、(1),(2)【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范围.试题解析:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范围是(﹣∞,﹣1].20、(Ⅰ);(Ⅱ)有最大值,最大值为3.【解析】

(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;(Ⅱ)由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】(Ⅰ)由得再由正弦定理得因此,又因为,所以.(Ⅱ)当时,的周长有最大值,且最大值为3,理由如下:由正弦定理得,所以,所以.因为,所以,所以当即时,取到最大值2,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.21、(1)见解析;(2)证明见解析.【解析】

当时,求函数的导数,判断导函数的单调性,计算即为导函数的零点;

当时,分类讨论x的范围,可令新函数,计算新函数的最值可证明.【详解】(1)的定义域为当时,,,易知为上的增函数,又,所以是的唯一零点;(2)证明:当时,,①若,则,所以成立,②若,设,则,令,则,因为,所以,从而在上单调递增,所以,即,在上单调递增;所以,即,故.【点睛】本题主要考查导数法研究函数的单调性,单调性,零点的求法.注意分类讨论和构造新函数求函数的最值的应用.22、(1)(2)是为定值,的横坐标为定值【解析】

(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论