山东省临沂市莒南县2021-2022学年九年级上学期期末数学试题_第1页
山东省临沂市莒南县2021-2022学年九年级上学期期末数学试题_第2页
山东省临沂市莒南县2021-2022学年九年级上学期期末数学试题_第3页
山东省临沂市莒南县2021-2022学年九年级上学期期末数学试题_第4页
山东省临沂市莒南县2021-2022学年九年级上学期期末数学试题_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………外…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………外…………○…………装…………○…………订…………○…………线…………○…………试卷第=page11页,共=sectionpages33页…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………试卷第=page11页,共=sectionpages33页山东省临沂市莒南县2021-2022学年九年级上学期期末数学试题试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.下列各式中正确的是(

)A. B. C. D.2.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃3.如图,已知直线,则的度数为(

)A. B. C. D.4.下列计算结果正确的是(

)A. B. C. D.5.为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了的光刻机难题,其中,则用科学记数法表示为(

)A. B. C. D.6.如图,在中,,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接.当点A,D,E在同一条直线上时,下列结论一定正确的是(

)A. B. C. D.7.如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为(

)A.15° B.20° C.25° D.30°8.若关于x的不等式组有且只有3个整数解,则a的取值范围是(

)A. B. C. D.9.如图,直线l,m相交于点O,P为这两直线外一点,且OP=2.7.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是(

)A.0 B.5 C.6 D.710.如图,D、E、F分别是各边中点,则以下说法错误的是(

)A.和的面积相等B.四边形是平行四边形C.若,则四边形是菱形D.若,则四边形是矩形11.如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为(

)A.1 B. C.2 D.12.已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地(

)A.15km B.16km C.44km D.45km13.二次函数y=(x﹣a)(x﹣b)﹣2,(a<b)与x轴的两个交点的横坐标分别为m和n,下列结论正确的是()A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b14.如,我们叫集合,其中1,2,叫做集合的元素.集合中的元素具有确定性(如必然存在),互异性(如,),无序性(即改变元素的顺序,集合不变).若集合,我们说.已知集合,集合,若,则的值是(

)A.-1 B.0 C.1 D.2第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题15.计算的结果是________.16.如图,A,B两点的坐标分别为,在x轴上找一点P,使线段的值最小,则点P的坐标是_______________.17.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为_____.18.如图,,以O为圆心,4为半径作弧交于点A,交于点B,分别以点A,B为圆心,大于的长为半径画弧,两弧在的内部相交于点C,画射线交于点D,E为上一动点,连接,,则阴影部分周长的最小值为_________.19.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.根据你对上述问题的理解,若令y=|x+1|+|x﹣2|,则y的取值范围是______________.评卷人得分三、解答题20.化简:.21.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查的学生人数为人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.22.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?23.如图①是甲,乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度与注水时间之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线表示_____________槽中水的深度与注入时间之间的关系;线段表示_____________槽中水的深度与注入时间之间的关系;铁块的高度为_____________.(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)24.已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(1)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(2)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.25.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.26.如图,在正方形中,是边上的一动点(不与,重合),连接,点关于直线的对称点为,连接并延长交于点,连接,过点作交的延长线于点,连接.(1)求证:;(2)猜想线段与的数量关系,并证明.答案第=page11页,共=sectionpages22页答案第=page11页,共=sectionpages22页参考答案:1.D【解析】【分析】根据绝对值、算术平方根、立方根、零次幂的知识对逐项排除即可.【详解】解:A.,故A选项错误;B.,故B选项错误;C.,故B选项错误;D.,故D选项正确.故选:D.【点睛】本题考查了绝对值、算术平方根、立方根、零次幂的相关知识,掌握这些基础知识是解答本题的关键.2.C【解析】【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【详解】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.【点睛】本题考查了函数图象,掌握数形结合思想、认真观察函数图象图,从不同的图中得到必要的信息是解决问题的关键.3.B【解析】【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∵,∴∠4=∠1=40°,∵,∴;故选B.【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.4.D【解析】【分析】根据幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算的知识逐项排除即可.【详解】解:A.,故A选项错误;

B.,故B选项错误;

C.,故C选项错误;

D.,故D选项正确.故答案为D.【点睛】本题考查了幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算等知识点,掌握相关运算法则是解答本题的关键.5.D【解析】【分析】由题意易得,然后根据科学记数法可直接进行求解.【详解】解:由题意得:,∴用科学记数法表示为;故选D.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.6.D【解析】【分析】由旋转可知,即可求出,由于,则可判断,即A选项错误;由旋转可知,由于,即推出,即B选项错误;由三角形三边关系可知,即可推出,即C选项错误;由旋转可知,再由,即可证明为等边三角形,即推出.即可求出,即证明,即D选项正确;【详解】由旋转可知,∵点A,D,E在同一条直线上,∴,∵,∴,故A选项错误,不符合题意;由旋转可知,∵为钝角,∴,∴,故B选项错误,不符合题意;∵,∴,故C选项错误,不符合题意;由旋转可知,∵,∴为等边三角形,∴.∴,∴,故D选项正确,符合题意;故选D.【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.7.B【解析】【分析】连接OA,如图,根据切线的性质得到∠OAB=90°,则利用互余可计算出∠AOB=40°,再利用圆周角定理得到∠ADC=20°,然后根据平行线的性质得到∠OCD的度数.【详解】解:连接OA,如图,∵AB切⊙O于点A,∴OA⊥AB,∴∠OAB=90°,∵∠B=50°,∴∠AOB=90°-50°=40°,∴∠ADC=∠AOB=20°,∵AD∥OB,∴∠OCD=∠ADC=20°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.C【解析】【分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a的取值范围即可.【详解】解:解不等式得:,解不等式得:,∴不等式组的解集为:,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴,解得:,故选:C.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数得出关于a的不等式组.9.B【解析】【分析】分别连接OP1,OP2,P1P2,由三角形三边的关系及对称的性质,可确定P1P2的范围,根据这范围即可确定答案.【详解】分别连接OP1,OP2,P1P2,如图所示,则,由对称知:,∴,∵,∴.∴A、C、D三个选项中提供的数值均不在上述范围内.故选:B.【点睛】本题考查了对称的性质,三角形三边的不等关系:任两边之和大于第三边,掌握此关系是关键.10.C【解析】【分析】根据中位线的性质,相似三角形的判定和性质,平行四边形、菱形、矩形的判定定理逐一判断各个选项,即可得到答案.【详解】解:∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC得中位线,∴ED∥AC,且ED=AC=AF;同理DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,故B正确;∴,∴,,∴和的面积相等,故A正确;∵,∴DF=AB=AE,∴四边形不一定是菱形,故C错误;∵∠A=90°,则四边形AEDF是矩形,故D正确;故选:C.【点睛】本题考查三角形中位线性质定理和平行四边形、矩形、菱形的判定定理,相似三角形的判定和性质,熟练掌握上述性质定理和判定定理是解题的关键.11.C【解析】【分析】先证明,再证明四边形MOND的面积等于,的面积,继而解得正方形的面积,据此解题.【详解】解:在正方形ABCD中,对角线BD⊥AC,又四边形MOND的面积是1,正方形ABCD的面积是4,故选:C.【点睛】本题考查正方形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.A【解析】【分析】根据图象信息和已知条件,用待定系数法求出,,(),再根据追上时路程相等,求出答案.【详解】解:设,将(3,60)代入表达式,得:,解得:,则,当y=30km时,求得x=,设,将(1,0),,代入表达式,得:,得:,∴,∴,,∵乙在途中休息了半小时,到达B地时用半小时,∴当时,设,将(2,30),代入表达式,得到:,得:,∴(),则当时,,解得:,∴,∴当乙再次追上甲时距离A地45km所以乙再次追上甲时距离地故选:A.【点睛】本题主要考查了利用一次函数图像解决实际问题,关键在于理解题意,明白追击问题中追上就是路程相等,再利用待定系数法求出函数表达式,最后进行求解.13.C【解析】【分析】依照题意画出二次函数y=(x﹣a)(x﹣b)及y=(x﹣a)(x﹣b)﹣2的大致图象,观察图象即可得出结论.【详解】解:二次函数y=(x﹣a)(x﹣b)与x轴交点的横坐标为a、b,将其图象往下平移2个单位长度可得出二次函数y=(x﹣a)(x﹣b)﹣2的图象.观察图象,可知:m<a<b<n.故选:C.【点睛】本题考查了抛物线与x轴的交点以及二次函数的图象,依照题意画出图象,利用数形结合解决问题是解题的关键.14.C【解析】【分析】根据集合的确定性、互异性、无序性,对于集合B的元素通过分析,与A的元素对应分类讨论即可.【详解】解:∵集合B的元素,,可得,∴,∴,,∴,当时,,,,不满足互异性,情况不存在,当时,,(舍),时,,,满足题意,此时,.故选:C【点睛】本题考查集合的互异性、确定性、无序性。通过元素的分析,按照定义分类讨论即可.15.2【解析】【分析】利用二次根式的乘除法则运算.【详解】解:原式====2.故答案是:2.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.【解析】【分析】连接点A,B交轴于点P,则PA+PB的值最小,此时点P即为所求.【详解】解:连接点A,B,设直线AB的解析式为点,点解得直线AB的解析式为当时,则解得故答案为:【点睛】本题考查了两线段之和的最值问题,待定系数法求一次函数解析式,一次函数与坐标轴的交点等知识,熟练掌握解题方法是解题关键.17.2.【解析】【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【详解】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF===2.故答案为:2.【点睛】本题考查了菱形的性质,解决本题的关键是掌握菱形的性质.18.【解析】【分析】先求出的长,作点D关于OM的对称点,连接B交OM于点,连接O,则B+D=B+=B,此时,BE+DE的最小值=B,进而即可求解.【详解】解:由题意得:OC平分∠MON,∴∠BOD=,∴的长=,作点D关于OM的对称点,连接B交OM于点,连接O,则B+D=B+=B,此时,BE+DE的最小值=B,∵∠AO=∠AOD=∠BOD=20°,∴∠BO=60°,∵O=OD=OB,∴是等边三角形,∴B=OB=4,∴阴影部分周长的最小值=,故答案是:.【点睛】本题主要考查弧长公式以及等边三角形的判定和性质,通过轴对称的性质,构造BE+DE的最小值=B,是解题的关键.19.y≥3【解析】【分析】分两种情况考虑即可:当时;当或时,借助数轴可确定y的取值范围.【详解】解:−1表示的点与2表示的点间的距离为|2−(-1)|=3;①如图所示,当时,则y=|x+1|+|x﹣2|=3;②如图所示,当或时,则|x﹣2|>3或|x+1|>3,所以y=|x+1|+|x﹣2|>3,综上所得:y≥3,故答案为:y≥3.【点睛】本题是材料题,考查了数轴上两点间的距离,借助数轴,解题的关键是利用数形结合是解决问题的关键,注意分类讨论.20.【解析】【分析】先算异分母分式加法,再利用分式除法法则计算即可得出答案.【详解】解:,,,,.【点睛】本题主要考查了分式的加减乘除混合运算,熟练掌握异分母分式加减法则是解本题的关键.21.(1)60;(2)见详解;(3)200人;(4).【解析】【分析】(1)利用园艺的人数除以百分比,即可得到答案;(2)先求出编织的人数,再补全条形图即可;(3)利用总人数乘以厨艺所占的百分比,即可得到答案;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【详解】解:(1)根据题意,本次随机调查的学生人数为:(人);故答案为:60;(2)选择编织的人数为:(人),补全条形图如下:(3)该校七年级学生选择“厨艺”劳动课程的人数为:(人);(4)根据题意,“园艺、电工、木工、编织”可分别用字母A,B,C,D表示,则列表如下:∵共有12种等可能的结果,其中恰好抽到“园艺、编织”类的有2种结果,∴恰好抽到“园艺、编织”类的概率为:;【点睛】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(1)一、二等奖奖品的单价分别是60元,45元;(2)共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【解析】【分析】(1)设一、二等奖奖品的单价分别是4x,3x,根据等量关系,列出分式方程,即可求解;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为件,根据4≤m≤10,且为整数,m为整数,即可得到答案.【详解】解:(1)设一、二等奖奖品的单价分别是4x,3x,由题意得:,解得:x=15,经检验:x=15是方程的解,且符合题意,∴15×4=60(元),15×3=45(元),答:一、二等奖奖品的单价分别是60元,45元;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为件,∵4≤m≤10,且为整数,m为整数,∴m=4,7,10,答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【点睛】本题主要考查分式方程和不等式组的实际应用,准确找出数量关系,列出分式方程或不等式,是解题的关键.23.(1)乙,甲,16;(2)2分钟【解析】【分析】(1)根据图象分析可知水深减少的图象为甲槽的,水深增加的为乙槽的,并水深16cm之后增加的变慢,即可得到铁块的高度;(2)利用待定系数法求出两个水槽中水深与时间的解析式,即可求解.【详解】解:(1)图②中折线表示乙槽中水的深度与注入时间之间的关系;线段表示甲槽中水的深度与放出时间之间的关系;铁块的高度为16.(2)设甲槽中水的深度为,把,代入,可得,解得,∴甲槽中水的深度为,根据图象可知乙槽和甲槽水深相同时,在DE段,设乙槽DE段水的深度为,把,代入,可得,解得,∴甲槽中水的深度为,∴甲、乙两个水槽中水的深度相同时,,解得,故注入2分钟时,甲、乙两个水槽中水的深度相同.【点睛】本题考查一次函数的实际应用,根据题意理解每段函数对应的实际情况是解题的关键.24.(1)∠DBC=48°;∠ACD=21°(2)36°【解析】【分析】(1)先根据等边对等角求出∠ABC=∠ACB=69°,然后求出∠BCD的度数即可得到∠ACD、∠ABD的度数,由此即可求解;(2)连接OD,先由平行线的性质求出∠ACD的度数,再根据圆内接四边形的性质求出∠ADC的度数,即可求出∠CAD的度数,根据圆周角定理求出∠COD的度数,即可求出∠E的度数.(1)解:∵AB=AC,∴∠ABC=∠ACB(180°﹣∠BAC)(180°﹣42°)=69°,∵BD为直径,∴∠BCD=90°,∵∠D=∠BAC=42°,∴∠DBC=90°﹣∠D=90°﹣42°=48°;∴∠ACD=∠ABD=∠ABC﹣∠DBC=69°﹣48°=21°;(2)解:如图②,连接OD,∵CD∥AB,∴∠ACD=∠BAC=42°,∵四边形ABCD为⊙O的内接四边形,∴∠B+∠ADC=180°,∴∠ADC=180°﹣∠B=180°﹣69°=111°,

∴∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣42°﹣111°=27°,∴∠COD=2∠CAD=54°,

∵DE为切线,∴OD⊥DE,∴∠ODE=90°,∴∠E=90°﹣∠DOE=90°﹣54°=36°.

【点睛】本题主要考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论