安徽省黄山市屯溪一中2025届高三二诊模拟考试数学试卷含解析_第1页
安徽省黄山市屯溪一中2025届高三二诊模拟考试数学试卷含解析_第2页
安徽省黄山市屯溪一中2025届高三二诊模拟考试数学试卷含解析_第3页
安徽省黄山市屯溪一中2025届高三二诊模拟考试数学试卷含解析_第4页
安徽省黄山市屯溪一中2025届高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市屯溪一中2025届高三二诊模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若时,恒成立,则实数的值为()A. B. C. D.2.若直线的倾斜角为,则的值为()A. B. C. D.3.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.4.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A. B. C. D.5.已知,则下列关系正确的是()A. B. C. D.6.()A. B. C. D.7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3 B.48cm3 C.60cm3 D.72cm38.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.9.函数的图象与函数的图象的交点横坐标的和为()A. B. C. D.10.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1 B. C.2 D.11.函数图像可能是()A. B. C. D.12.设,满足,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.14.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________15.在面积为的中,,若点是的中点,点满足,则的最大值是______.16.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.18.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.19.(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.(Ⅰ)若,求曲线的方程;(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.20.(12分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.21.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.22.(10分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得.故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.2、B【解析】

根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.3、A【解析】

先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)=sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.4、C【解析】

几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.5、A【解析】

首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,,,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.6、B【解析】

利用复数代数形式的乘除运算化简得答案.【详解】.故选B.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.7、B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.8、B【解析】

根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.【点睛】本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.9、B【解析】

根据两个函数相等,求出所有交点的横坐标,然后求和即可.【详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.10、B【解析】

画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.11、D【解析】

先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.12、C【解析】

首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.14、【解析】

先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题15、【解析】

由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.16、60【解析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(i)(ii)分布列见解析,【解析】

(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为.(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为.(ii),因此,.即的分布列为0123因此数学期望为.【点睛】本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.18、(1);(2)证明见解析,.【解析】

(1)根据离心率和的面积是得到方程组,计算得到答案.(2)先排除斜率为0时的情况,设,,联立方程组利用韦达定理得到,,根据化简得到,代入直线方程得到答案.【详解】(1)由题意可得,解得,,则椭圆的标准方程是.(2)当直线的斜率为0时,直线与直线关于轴对称,则直线与直线的斜率之和为零,与题设条件矛盾,故直线的斜率不为0.设,,直线的方程为联立,整理得则,.因为直线与直线的斜率之和为1,所以,所以,将,代入上式,整理得.所以,即,则直线的方程为.故直线恒过定点.【点睛】本题考查了椭圆的标准方程,直线过定点问题,计算出是解题的关键,意在考查学生的计算能力和转化能力.19、(Ⅰ)和.;(Ⅱ)证明见解析;(Ⅲ).【解析】

(Ⅰ)由,可得,解出即可;(Ⅱ)设点,设直线,与椭圆方程联立可得:,利用,根与系数的关系、中点坐标公式,证明即可;(Ⅲ)由(Ⅰ)知,曲线,且,设直线的方程为:,与椭圆方程联立可得:,利用根与系数的关系、弦长公式、三角形的面釈计算公式、基本不等式的性质,即可求解.【详解】(Ⅰ)由题意:,,解得,则曲线的方程为:和.(Ⅱ)证明:由题意曲线的渐近线为:,设直线,则联立,得,,解得:,又由数形结合知.设点,则,,,,,即点在直线上.(Ⅲ)由(Ⅰ)知,曲线,点,设直线的方程为:,联立,得:,,设,,,,面积,令,,当且仅当,即时等号成立,所以面积的最大值为.【点睛】本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆的相交问题、弦长公式、三角形的面积计算公式、基本不等式的性质,考查了推理论证能力与运算求解能力,属于难题.20、(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是.试题解析:(1)函数的定义域为当时,,所以所以当时,,当时,,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值;(2)设函数上点与函数上点处切线相同,则所以所以,代入得:设,则不妨设则当时,,当时,所以在区间上单调递减,在区间上单调递增,代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时,又当时因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线相同.又由得:所以单调递减,因此所以实数的取值范围是.21、(1)(2)是,【解析】

(1)设,根据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理和点满足椭圆方程,求出,,再利用焦半径公式表示出,进而求出周长为定值.【详解】(1)设,因为,即则,即,因为均在上,代入得,解得,所以椭圆的方程为;(2)由(1)得,作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论