版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省安仁一中、资兴市立中学2025届高三最后一模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式组表示的平面区域为,则()A., B.,C., D.,2.执行如下的程序框图,则输出的是()A. B.C. D.3.已知集合,集合,那么等于()A. B. C. D.4.已知分别为圆与的直径,则的取值范围为()A. B. C. D.5.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关6.设函数定义域为全体实数,令.有以下6个论断:①是奇函数时,是奇函数;②是偶函数时,是奇函数;③是偶函数时,是偶函数;④是奇函数时,是偶函数⑤是偶函数;⑥对任意的实数,.那么正确论断的编号是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤7.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.8.若集合,,则()A. B. C. D.9.已知函数.若存在实数,且,使得,则实数a的取值范围为()A. B. C. D.10.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()A. B. C. D.11.设为等差数列的前项和,若,则A. B.C. D.12.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2 B. C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递增,则实数a值范围为_________.14.已知数列的前项和公式为,则数列的通项公式为___.15.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________.16.的展开式中,x5的系数是_________.(用数字填写答案)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.18.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,19.(12分)已知椭圆()经过点,离心率为,、、为椭圆上不同的三点,且满足,为坐标原点.(1)若直线、的斜率都存在,求证:为定值;(2)求的取值范围.20.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求二面角的余弦值.21.(12分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.22.(10分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,
设,则,的几何意义为直线在轴上的截距的2倍,
由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;
设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.2、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.3、A【解析】
求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.4、A【解析】
由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题5、D【解析】
对每一个选项逐一分析判断得解.【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.故选D.【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.6、A【解析】
根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,,此时,故⑥错误;故③④正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.7、C【解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.8、B【解析】
根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.【点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.9、D【解析】
首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,.其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2).(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.10、C【解析】
根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.11、C【解析】
根据等差数列的性质可得,即,所以,故选C.12、B【解析】
利用双曲线的定义和条件中的比例关系可求.【详解】.选B.【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由在上恒成立可求解.【详解】,令,∵,∴,又,,从而,令,问题等价于在时恒成立,∴,解得.故答案为:.【点睛】本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解.14、【解析】
由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式.【详解】由题意,可知当时,;当时,.又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】令直线:,与椭圆方程联立消去得,可设,则,.可知,又,故.三角形周长与三角形内切圆的半径的积是三角形面积的二倍,则内切圆半径,其面积最大值为.故本题应填.点睛:圆锥曲线中最值与范围的求法有两种:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法,判别式法,重要不等式及函数的单调性法等.16、-189【解析】由二项式定理得,令r=5得x5的系数是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】
(1)通过证明,即可证明线面平行;(2)通过证明平面,即可证明线线垂直.【详解】(1)连,因为为平行四边形,为其中心,所以,为中点,又因为为中点,所以,又平面,平面所以,平面;(2)作于因为平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【点睛】此题考查证明线面平行和线面垂直,通过线面垂直得线线垂直,关键在于熟练掌握相关判定定理,找出平行关系和垂直关系证明.18、(1)列联表见解析,有把握;(2)分布列见解析,.【解析】
(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.【详解】解:(1)由题意得下表:男女合计冰雪迷402060非冰雪迷202040合计6040100的观测值为所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为012【点睛】本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题.19、(1)证明见解析;(2).【解析】
(1)首先根据题中条件求出椭圆方程,设、、点坐标,根据利用坐标表示出即可得证;(2)设直线方程,再与椭圆方程联立利用韦达定理表示出,即可求出范围.【详解】(1)依题有,所以椭圆方程为.设,,,由为的重心,;又因为,,,,(2)当的斜率不存在时:,,,代入椭圆得,,,当的斜率存在时:设直线为,这里,由,,根据韦达定理有,,,故,代入椭圆方程有,又因为,综上,的范围是.【点睛】本题主要考查了椭圆方程的求解,三角形重心的坐标关系,直线与椭圆所交弦长,属于一般题.20、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)取中点,连结、,四边形是平行四边形,由,,得,从而,,求出,由此能证明.(Ⅱ)以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【详解】证明:(Ⅰ)取中点,连结、,∵,,∴四边形是平行四边形,∵,,,∴,∴,∴,在中,,又∵为的中点,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,设,则,,,,∴,,,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度泵站泵叶轮维修与更换服务合同3篇
- 2024年建筑工程安全责任具体合同版B版
- 2024年度专利技术居间许可合同3篇
- 2024年度影视制作合同标的及制作流程具体要求2篇
- 2024年度三人合伙协议书:区块链技术研发应用合同2篇
- 2024年度市场营销外包施工合同3篇
- 2024年动力煤进口清关共创双赢合作!2篇
- 2024年度房地产销售合同:某开发商与某购房者就房屋买卖的协议3篇
- 2024年度矿产资源买卖合同种类3篇
- 2024年度卫浴产品塑胶模具供应与质量保证合同2篇
- 2024年电梯安全总监安全员考试题参考
- 2024秋初中化学九年级上册教学设计(教案)跨学科实践活动3
- (三年经典错题本)高三化学二轮 物质结构答题规范(含解析)
- 2024年秋新湘教版七年级地理上册全册课件(新教材)
- 平山水利枢纽设计说明书
- 基础模块3 Unit2 Community Life单元测试-2025年中职高考英语一轮复习讲练测(高教版2023修订版·全国用)
- 2023-2024学年部编版语文四年级上册期末测试卷(附答案解析)
- 民法典-婚姻家庭编实务
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷代号:1141)
- 八年级英语上册 Unit 4 Whats the best movie theater(第1课时)说课稿
- 浙江省城市轨道交通站台门工程施工质量验收规范
评论
0/150
提交评论