版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省汕头市潮师高级中学高三考前热身数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,满足,则()A.1 B. C. D.52.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.53.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.为虚数单位,则的虚部为()A. B. C. D.5.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6.函数y=sin2x的图象可能是A. B.C. D.7.若,,,点C在AB上,且,设,则的值为()A. B. C. D.8.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.9.设、分别是定义在上的奇函数和偶函数,且,则()A. B.0 C.1 D.310.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位11.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()A. B. C.1 D.12.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在等差数列()中,若,,则的值是______.14.的展开式中,的系数为____________.15.若变量,满足约束条件,则的最大值为__________.16.设等比数列的前项和为,若,则数列的公比是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,角、、的对边分别为,,,,.(1)若,求的值;(2)若,求的面积.18.(12分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.19.(12分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.20.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.21.(12分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.22.(10分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.2、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.3、A【解析】
利用已知条件画出几何体的直观图,然后求解几何体的体积.【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:.故选:.【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.4、C【解析】
利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.5、C【解析】
根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.6、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.7、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.9、C【解析】
先根据奇偶性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,,用替换,得,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。10、D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D11、D【解析】
根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.12、A【解析】
设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-15【解析】
是等差数列,则有,可得的值,再由可得,计算即得.【详解】数列是等差数列,,又,,,故.故答案为:【点睛】本题考查等差数列的性质,也可以由已知条件求出和公差,再计算.14、16【解析】
要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.15、【解析】
根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.16、.【解析】
当q=1时,.当时,,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)7(2)14【解析】
(1)在中,,可得,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【详解】(1)在中,,,,,,.(2),,,解得,.【点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.18、;4;12.【解析】
由题意可知,,求导函数,方程在区间上有实数解,求出实数的取值范围;由,则,分步讨论,并利用导函数在函数的单调性的研究,得出正实数的最大值;设直线与曲线的切点为,因为,所以切线斜率,切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,求得,设,则,所以在上单调递增,最后求出实数的值.【详解】由题意可知,,则,即方程在区间上有实数解,解得;因为,则,①当,即时,恒成立,所以在上单调递增,不符题意;②当时,令,解得:,当时,,单调递增,所以不存在,使得在上的最大值为,不符题意;③当时,,解得:,且当时,,当时,,所以在上单调递减,在上单调递增,若,则在上单调递减,所以,若,则上单调递减,在上单调递增,由题意可知,,即,整理得,因为存在,符合上式,所以,解得,综上,的最大值为4;设直线与曲线的切点为,因为,所以切线斜率,即切线方程整理得:由题意可知,,即,即,解得所以切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,消去,整理得,且因为,解得,设,则,所以在上单调递增,因为,所以,所以,即.【点睛】本题主要考查导数在函数中的研究,导数的几何意义,属于难题.19、(1)证明见解析,;(2).【解析】
(1)将等式变形为,进而可证明出是等差数列,确定数列的首项和公差,可求得的表达式,进而可得出数列的通项公式;(2)利用错位相减法可求得数列的前项和.【详解】(1)因为,所以,即,所以数列是等差数列,且公差,其首项所以,解得;(2),①,②①②,得,所以.【点睛】本题考查利用递推公式证明等差数列,同时也考查了错位相减法求和,考查推理能力与计算能力,属于中等题.20、(1)(2)【解析】
(1)先消去参数,化为直角坐标方程,再利用求解.(2)直线与曲线方程联立,得,求得弦长和点到直线的距离,再求的面积.【详解】(1)由已知消去得,则,所以,所以直线的极坐标方程为.(2)由,得,设,两点对应的极分别为,,则,,所以,又点到直线的距离所以【点睛】本题主要考查参数方程、直角坐标方程及极坐标方程的转化和直线与曲线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.21、(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【解析】
(1)对求导,分,,进行讨论,可得的单调性;(2)在定义域内是是增函数,由(1)可知,,设,可得,则,设,对求导,利用其单调性可证明.【详解】解:的定义域为,因为,所以,当时,令,得,令,得;当时,则,令,得,或,令,得;当时,,当时,则,令,得;综上所述,当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)在定义域内是是增函数,由(1)可知,此时,设,又因为,则,设,则对于任意成立,所以在上是增函数,所以对于,有,即,有,因为,所以,即,又在递增,所以,即.【点睛】本题主要考查利用导数研究含参函数的单调性及导数在极值点偏移中的应用,考查学生分类讨论与转化的思想,综合性大,属于难题.22、(1)证明见解析,;(2)11202.【解析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿小班第一学期教学计划
- 2024年校信息化教学工作计划范文
- 第一学期初二政治教学计划范文
- 2024年月市场部工作计划范文
- 人工智能技术与应用(案例版)拓展阅读汇 第4-10章
- 新学期开学计划其他工作计划
- 音乐教学工作总结以及计划范文
- 人教版一年级数学上册工作计划
- 镇年健康教育个人的工作计划范文
- 人教版初三化学教学工作计划九年级化学教学工作计划
- 地方融资平台债务和政府中长期支出事项监测平台操作手册-单位
- 县域经济发展课件
- 《中国书法史》教学大纲
- 医学科学(小学生科普)ppt课件
- 新员工入职消防安全教育培训记录
- 读了萧平实导师的《念佛三昧修学次第》才知道原来念佛门中有微妙法
- 周边传动浓缩刮泥机检验报告(ZBG型)(完整版)
- 纸箱理论抗压强度、边压强度、耐破强度的计算
- 鹬蚌相争课件
- PMC(计划物控)面试经典笔试试卷及答案
- 《质量管理体系文件》风险和机遇评估分析表
评论
0/150
提交评论