北京邮电大学《计算机视觉》2020-2021学年第一学期期末试卷_第1页
北京邮电大学《计算机视觉》2020-2021学年第一学期期末试卷_第2页
北京邮电大学《计算机视觉》2020-2021学年第一学期期末试卷_第3页
北京邮电大学《计算机视觉》2020-2021学年第一学期期末试卷_第4页
北京邮电大学《计算机视觉》2020-2021学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页北京邮电大学

《计算机视觉》2020-2021学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的目标跟踪任务中,持续跟踪视频中的特定目标。假设要跟踪一个在人群中行走的人,以下关于目标跟踪方法的描述,哪一项是不正确的?()A.基于滤波的方法,如卡尔曼滤波和粒子滤波,可以预测目标的位置和状态B.基于深度学习的方法能够学习目标的外观特征,提高跟踪的准确性和鲁棒性C.目标跟踪过程中,目标的外观变化、遮挡和背景干扰等因素不会对跟踪结果产生影响D.结合多种特征和算法的融合跟踪方法,可以综合利用不同方法的优势,提高跟踪性能2、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法3、在计算机视觉的医学图像分析中,例如对肿瘤的检测和分割。假设医学图像的质量较差,存在噪声和伪影,以下哪种预处理方法可能有助于提高后续分析的准确性?()A.图像平滑B.图像锐化C.图像二值化D.图像翻转4、在计算机视觉的图像生成任务中,除了生成新的图像,还可以对已有图像进行风格转换。假设我们要将一张照片转换为油画风格,以下哪种方法能够实现逼真的风格转换效果?()A.基于图像滤波和变换的方法B.基于深度学习的风格迁移算法,如CycleGANC.基于图像融合和合成的方法D.基于颜色映射和纹理合成的方法5、计算机视觉中的视频理解任务包括对视频内容的分析和解释。假设要理解一段新闻视频的主要内容和事件发展。以下关于视频理解的描述,哪一项是不正确的?()A.可以通过对视频中的帧进行分类、目标检测和跟踪来实现视频理解B.深度学习中的注意力机制可以帮助聚焦视频中的关键信息,提高理解的准确性C.视频理解只需要关注视觉信息,不需要考虑音频和文字等其他模态的信息D.可以结合知识图谱和语义理解技术,对视频中的内容进行更深入的分析和解释6、计算机视觉中的视频分析需要对连续的图像帧进行处理和理解。假设要分析一段监控视频中的人群行为,包括行走方向、聚集和分散等。以下哪种视频分析技术在处理这种复杂的群体行为时最为有效?()A.帧间差分法B.背景减除法C.光流法结合轨迹分析D.深度学习的行为识别模型7、在计算机视觉的车牌识别任务中,假设要从不同角度和光照条件下拍摄的车辆图像中准确识别出车牌号码。以下哪种技术可能有助于提高识别准确率?()A.字符分割和单独识别B.利用深度学习模型进行端到端的识别C.只关注车牌的颜色特征D.随机猜测车牌号码8、在计算机视觉的车牌识别任务中,需要从车辆图像中准确提取车牌号码。假设车牌存在倾斜、变形和光照不均等问题。以下哪种车牌识别方法在应对这些挑战时表现更为出色?()A.基于字符分割的车牌识别B.基于模板匹配的车牌识别C.基于深度学习的车牌识别D.基于特征提取的车牌识别9、计算机视觉在文物保护和修复中的应用逐渐增多。假设要对一幅古老的绘画进行数字化修复和增强,以下关于颜色恢复的挑战,哪一项是最为显著的?()A.由于年代久远,原画作的颜色信息缺失严重B.不同区域的颜色褪色程度不一致,难以统一恢复C.缺乏对原画作创作时所用颜料的了解,难以准确还原颜色D.修复过程中可能引入新的颜色偏差,影响修复效果10、计算机视觉在卫星遥感图像分析中的应用可以帮助监测地球环境和资源。假设要通过卫星图像分析森林的覆盖面积变化。以下关于计算机视觉在卫星遥感中的描述,哪一项是不准确的?()A.可以通过图像分类和分割技术区分森林、草地和建筑物等不同地物类型B.能够对多时相的卫星图像进行比较,监测森林的生长和砍伐情况C.计算机视觉在卫星遥感中的应用不受卫星图像的分辨率和光谱信息的限制D.可以结合地理信息系统(GIS)数据,进行更深入的空间分析和决策支持11、在计算机视觉的图像修复任务中,假设要填补图像中缺失或损坏的部分。以下哪种方法可能更有效地恢复图像的完整性和真实性?()A.基于扩散的修复方法B.基于深度学习的图像修复模型,如ContextEncoderC.用固定的图案或颜色填充缺失部分D.不进行修复,保留图像的缺失部分12、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下关于图像采集设备的选择,哪一项是最为关键的?()A.选择高分辨率的数码相机,获取清晰的图像B.选用具有大景深的镜头,确保整个电路板都清晰成像C.采用高速摄像机,快速采集大量图像D.选择价格低廉的图像采集设备,降低成本13、图像分类是计算机视觉的基础任务之一。假设要对大量的自然风景图片进行分类,包括山脉、森林、海滩等不同类型,同时图片可能存在不同的拍摄角度、光照条件和季节变化。为了能够准确地对这些图片进行分类,以下哪种特征提取方法与分类算法的组合最为有效?()A.SIFT特征+支持向量机B.HOG特征+决策树C.卷积神经网络自动提取特征+深度学习分类器D.颜色直方图特征+朴素贝叶斯14、在图像分类任务中,深度学习模型取得了显著的成果。假设要对一组包含不同动物的图像进行分类,以下关于图像分类模型的描述,正确的是:()A.模型的层数越多,分类准确率一定越高B.数据增强技术,如旋转、裁剪等,对模型的性能提升没有帮助C.结合多种特征提取方法和分类器,可以提高图像分类的准确性和鲁棒性D.图像分类模型不需要考虑图像的空间信息,只关注像素值的统计特征15、计算机视觉中的语义分割旨在为图像中的每个像素分配一个类别标签。假设要对医学影像中的肿瘤区域进行语义分割,以下关于模型评估指标的选择,哪一项是最为关键的?()A.准确率,即正确分类的像素比例B.召回率,即正确分割出肿瘤像素的比例C.F1分数,综合考虑准确率和召回率D.平均交并比(MIoU),衡量分割结果与真实标签的重合程度16、计算机视觉中的图像增强技术可以改善图像质量。假设要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,正确的是:()A.简单地增加图像的亮度就能有效改善低光照图像的质量B.直方图均衡化方法总是能够在不引入噪声的情况下增强图像对比度C.基于深度学习的图像增强方法能够自适应地学习到适合的增强策略D.图像增强不会改变图像的原始信息和内容17、计算机视觉在自动驾驶领域有重要应用。假设要开发一个能够识别道路标志的系统,以下关于应对不同光照条件的策略,哪一项是最为有效的?()A.使用固定的阈值对图像进行二值化处理B.采用自适应的图像增强算法,根据光照情况调整图像C.忽略光照变化,依靠模型的泛化能力D.只在特定的光照条件下收集训练数据18、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义19、在计算机视觉的图像压缩任务中,需要在减少数据量的同时尽量保持图像的质量。假设要对一组高清图像进行压缩,以节省存储空间和传输带宽,同时要求解压后的图像能够满足一定的视觉要求。以下哪种图像压缩算法在这种情况下效果较好?()A.JPEG压缩算法B.PNG压缩算法C.WebP压缩算法D.BPG压缩算法20、计算机视觉中的行人重识别任务是在不同摄像头中识别出特定的行人。假设要在一个大型火车站中寻找一个走失的儿童。以下关于行人重识别的描述,哪一项是不准确的?()A.可以利用行人的服装颜色、款式和携带物品等特征进行重识别B.深度学习中的度量学习方法可以学习行人的特征表示,提高重识别的准确率C.行人重识别不受行人姿态变化和摄像头视角差异的影响D.可以通过构建大规模的行人数据集进行训练,提升模型的泛化能力21、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要对一张受到严重噪声污染的图像进行去噪处理,以下关于图像去噪方法的描述,正确的是:()A.均值滤波方法能够在去除噪声的同时很好地保留图像的细节B.中值滤波对椒盐噪声的去除效果不佳C.基于深度学习的图像去噪方法可以自适应地学习噪声模式和图像特征D.图像去噪不会引入任何新的失真或模糊22、视频分析是计算机视觉的一个重要领域。假设要对一段监控视频中的行为进行分析和理解,以下关于视频分析方法的描述,正确的是:()A.直接将视频中的每一帧图像作为独立的图像进行处理,就能准确分析视频中的行为B.考虑视频的时序信息和帧间的相关性对于理解复杂的行为非常重要C.视频分析只适用于简单的动作识别,对于复杂的多人物交互行为无法处理D.视频的分辨率和帧率对视频分析的结果没有影响23、图像分割是将图像分成不同的区域,每个区域具有相似的特征。假设要对医学图像进行器官分割,以下关于图像分割方法的描述,哪一项是不正确的?()A.基于阈值的分割方法简单直接,但对于复杂图像效果往往不佳B.基于边缘检测的分割方法通过寻找图像中的边缘来划分区域,但容易受到噪声影响C.基于深度学习的语义分割方法能够实现像素级别的分类,效果较好,但计算量较大D.图像分割只适用于灰度图像,对于彩色图像无法进行有效的分割24、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设要检测生产线上的零件是否存在缺陷,以下关于工业检测中的计算机视觉应用的描述,哪一项是不正确的?()A.可以使用机器视觉系统对零件进行实时检测,快速发现缺陷B.深度学习模型能够自动学习正常零件和缺陷零件的特征差异,实现准确的缺陷检测C.工业检测中的计算机视觉系统需要具备高度的准确性和稳定性,能够适应不同的生产环境D.计算机视觉在工业检测中只能检测外观缺陷,对于零件的内部结构和性能无法进行评估25、计算机视觉在无人驾驶中的应用至关重要。假设要通过车载摄像头识别道路上的交通标志和标线,以下关于应对复杂环境变化的策略,哪一项是不正确的?()A.利用多模态数据融合,如结合摄像头和激光雷达的信息B.定期更新模型,适应新出现的交通标志和标线C.只依靠单一摄像头的图像信息,不考虑其他传感器D.对不同天气和光照条件下的数据进行增强训练26、在计算机视觉的人脸识别任务中,需要应对姿态、表情和光照等变化。假设要构建一个能够在不同环境下准确识别人脸的系统,以下哪种人脸识别方法在处理这些变化时具有更高的准确性和鲁棒性?()A.基于特征点的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别D.基于几何形状的人脸识别27、在计算机视觉的应用于农业领域,例如作物监测和病虫害检测,需要对大量的田间图像进行分析。假设我们要检测农作物叶片上的病虫害症状,以下哪种技术能够实现快速、准确的检测,并且适应不同的生长阶段和环境条件?()A.基于传统图像分割和特征提取的方法B.基于深度学习的目标检测和分类算法,针对病虫害特征训练C.基于光谱分析和颜色特征的方法D.基于机器视觉和模式识别的方法28、在计算机视觉的目标识别任务中,假设目标物体被部分遮挡,以下哪种模型架构可能更有助于恢复被遮挡部分的信息?()A.多层感知机(MLP)B.卷积神经网络(CNN)C.循环神经网络(RNN)D.注意力机制(AttentionMechanism)29、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设我们要分析一个视频中物体的运动速度和方向,以下哪种光流估计算法在复杂场景下能够提供更准确的结果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法30、计算机视觉中的图像修复旨在恢复图像中缺失或损坏的部分。假设一张珍贵的老照片有部分区域损坏,需要进行修复以还原其完整的内容。以下哪种图像修复方法在处理这种情况时能够生成更自然和逼真的结果?()A.基于扩散的图像修复B.基于纹理合成的图像修复C.基于深度学习的图像修复D.基于样例的图像修复二、应用题(本大题共5个小题,共25分)1、(本题5分)利用深度学习算法,对不同种类的果脯图像进行分类。2、(本题5分)利用目标检测算法,在天文图像中检测星系。3、(本题5分)运用图像识别算法,对不同类型的交通工具图像进行分类和识别。4、(本题5分)使用目标跟踪算法,跟踪杂技表演中演员的技巧动作。5、(本题5分)使用目标检测技术,从环保监测图像中检测出污染源。三、简答题(本大题共5个小题,共25分)1、(本题5分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论