版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9/20山西省孝义市2022年八年级上学期《数学》期中试题与参考答案一、选择题毎小题2分,共20分.下列各小题均给出四个备选答案,请将符合题意选项的字母代号,填写在下面方格内。1.下列交通标志中,不是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项符合题意.故选:D.2.下列四组图形中,与如图图形全等的是()A. B. C. D.【分析】认真观察图形,根据全等形的定义,能够重合的图形是全等形,可得答案.解:A、与已知图形不能重合,故此选项不合题意;B、与已知图形能完全重合,故此选项符合题意;C、与已知图形不重合,故此选项不合题意;D、与已知图形不重合,故此选项不合题意.故选:B.3.小明要做一个三角形木架,现在他已经有长度为20cm和40cm的两根木条,那么下列可供他选用的木条的长是()A.20cm B.40cm C.60cm D.80cm【分析】首先设第三根木条的长度为xcm,根据三角形的三边关系:三角形两边之和大于第三边.三角形的两边差小于第三边,可得40﹣20<x<20+40,再解即可.解:设第三根木条的长度为xcm,根据三角形的三边关系可得:40﹣20<x<20+40,即:20<x<60,故选:B.4.八边形的外角和为()A.180° B.360° C.900° D.1260°【分析】根据多边形的外角和等于360°进行解答.解:八边形的外角和等于360°.故选:B.5.一个等边三角形和两个等腰直角三角形的位置如图所示,若∠3=70°,则∠1+∠2=()A.290° B.200° C.140° D.110°【分析】由∠3=70°,∠DBM=60°,得∠BAC+∠BCA=130°,从而∠BAC+∠BCA+∠FCE+∠HAG=220°,又∠ECA+∠1+∠BAG+∠2=360°,故∠1+∠2=140°.解:如图:因为∠3=70°,∠DBM=60°,所以∠FBM=130°,所以∠BAC+∠BCA=130°,因为∠FCE=∠HAG=45°,所以∠BAC+∠BCA+∠FCE+∠HAG=130°+45°+45°=220°,即∠ECA+∠BAG=220°,因为∠ECA+∠1+∠BAG+∠2=360°,所以∠1+∠2=140°,故选:C.6.如图,∠C=∠D=90°,AC=BD,则判定△ABC≌△BAD全等的依据是()A.SAS B.ASA C.AAS D.HL【分析】利用直角三角形的判定方法进行判断.解:在Rt△ABC和Rt△BAD中,,所以Rt△ABC≌Rt△BAD(HL).故选:D.7.已知点A(m,2)和点B(﹣1,n)关于y轴对称,则m+n的值是()A.1 B.﹣3 C.3 D.﹣1【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.解:因为A(m,2)与点B(﹣1,n)关于y轴对称,所以m=1,n=2,所以m+n=1+2=3,故选:C.8.如图,在△ABC中,AB=8,BC=9,AC=6,AD是角平分线,DE⊥AB,DF⊥AC,则S△ABD:S△ACD=()A.4:3 B.9:8 C.9:6 D.3:2【分析】根据角平分线的性质可得DE=DF,再利用三角形的面积公式计算可求解.解:因为AD是角平分线,DE⊥AB,DF⊥AC,所以DE=DF,因为AB=8,BC=9,AC=6,所以S△ABD:S△ACD==AB:AC=8:6=4:3.故选:A.9.如图,△ABC中,点E是AC的中点、点F是中线CD的中点,若△DEF的面积是3,则△ABC的面积是()A.12 B.24 C.36 D.48【分析】由点F是中线CD的中点,得出S△DCE=2S△DEF=6,点E是AC的中点,得出S△ACD=2S△DCE=12,CD是△ABC的中线,得出S△ABC=2S△ACD=24.解:因为点F是中线CD的中点,所以S△DCE=2S△DEF=2×3=6,因为点E是AC的中点,所以S△ACD=2S△DCE=2×6=12,因为CD是△ABC的中线,所以S△ABC=2S△ACD=2×12=24,故选:B.10.如图,在△ABC中,DE是AB的垂直平分线,BC上的点F在AC的垂直平分线上,若AB=6,AC=8,BC=12,则△AEF的周长是()A.6 B.8 C.10 D.12【分析】根据线段垂直平分线的性质得到EA=EB,FA=FC,根据三角形的周长公式计算即可.解:因为DE是线段AB的垂直平分线,所以EA=EB,同理,FA=FC,所以△AEF的周长=AE+EF+FA=EB+EF+FC=BC=12,故选:D.二、填空题(每小题3分,共18分)11.如图,点D,E分别在线段AB,AC上,且AB=AC,要依据“AAS”判定△ABE≌△ACD,则还需要添加的条件是∠ADC=∠AEB.【分析】添加条件是∠ADC=∠AEB,根据AAS推出△ABE≌△ACD即可.解:添加的条件是∠ADC=∠AEB,理由是:在△ABE和△ACD中,,所以△ABE≌△ACD(AAS),故答案为:∠ADC=∠AEB.12.如图,停放自行车时要放下支架,自行车之所以能停放稳定,是因为构成了三个三角形:一是由前轮与地面的接触点、后轮与地面的接触点、支架与地面的接触点构成的三角形支撑面;二是自行车车架呈三角形;三是由后轮、轴、支架所构成的三角形.其中,蕴含的数学道理是三角形具有稳定性.【分析】根据三角形具有稳定性解答即可.解:蕴含的数学道理是三角形具有稳定性,故答案为:三角形具有稳定性.13.如图,过正五边形ABCDE的顶点A作CD的平行线FG,则∠GAE的度数是36°.【分析】首先连接BE,易得GF∥BE∥CD,又由正五边形ABCDE,可求得∠BAE的度数,继而求得∠GAE的度数.解:连接BE,因为五边形ABCDE是正五边形,所以∠BAE=108°,AB=AE,所以∠AEB=∠ABE=36°,因为BE∥CD,GF∥CD,所以BE∥GF,所以∠GAE=∠AEB=36°.故答案为:36°.14.如图,直角坐标系中,已知A(﹣2,﹣1),B(3,﹣1),C(1,2),请你在y轴上找一点P.使△ABP和△ABC全等,则点P的坐标是(0,2)或(0,﹣4).(写出一个即可)【分析】分点P位于y轴正半轴和负半轴两种情况结合全等三角形的性质分析求解.解:设点P的坐标为(0,m),①当点P在y轴正半轴上时,因为△ABP1≌△BAC,所以AP1=BC,又因为A(﹣2,﹣1),B(3,﹣1),C(1,2),所以m+1=2+1,解得:m=2,此时P点坐标为(0,2);②点P在y轴负半轴时,P2与点P1(0,2)关于直线y=﹣1对称,所以2+1=﹣1﹣m,解得:m=﹣4,此时P点坐标为P(0,﹣4).综上,点P的坐标为(0,2)或(0,﹣4).故答案为(0,2)或(0,﹣4).15.如图,一个等腰直角三角形ABC物件斜靠在墙角处(∠O=90°),若OA=50cm,OB=28cm,则点C离地面的距离是28cm.【分析】如图,过点C作CD⊥OB于点D,构造全等三角形△AOB≌△BDC(AAS),由全等三角形的对应边相等得到OB=CD.解:如图,过点C作CD⊥OB于点D,因为∠O=∠ABC=∠BDC=90°,所以∠1=∠2(同角的余角相等).在△AOB与△BDC中,,所以△AOB≌△BDC(AAS).所以OB=CD=28cm.故答案是:28.16.如图,以△ABC的顶点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E,再分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点F,作射线AF交BC于点G,若AB=AG=GC,则∠AGC=108°.【分析】利用基本作图得到AG平分∠BAC,根据等腰三角形的性质和三角形的内角和定理即可得到结论.解:由作法得AG平分∠BAC,所以∠BAG=∠CAG,因为AG=CG,所以∠C=∠CAG,因为AB=AG,所以∠B=∠AGB,因为∠AGB=∠C+∠CAG=2∠C,所以∠B=∠AGB=2∠C,∠BAC=2∠C,因为∠B+∠C+∠BAC=2∠C+∠C+2∠C=180°,所以∠C=36°,所以∠CAG=∠C=36°,所以∠AGC=180°﹣36°﹣36°=108°,故答案为:108°.三、解答题(本大题共6个小题,共52分.解答题应写出文字说明、证明过程或演算步骤)17.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,AF是△ABC的高,∠B=30°,∠E=40°,求∠ECD和∠FAC的度数.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和和三角形的高进行分析解答即可.解:∠ECD=∠B+∠E=30°+40°=70°,因为CE是△ABC的外角∠ACD的平分线,所以∠ACD=2∠ECD=140°,所以∠ACF=180°﹣∠ACD=40°,因为AF是△ABC的高,所以∠ACF=90°,所以∠FAC=90°﹣∠ACF=50°,答:∠ECD=70°,∠FAC=50°.18.如图,∠ABC=∠DCB,BD、CA分别平分∠ABC、∠DCB.求证:AC=DB.【分析】首先根据角平分线的性质可得∠ACB=∠DBC,然后再加上公共边BC=BC可利用ASA定理判定△ABC≌△DCB,从而可得AC=BD.【解答】证明:因为BD、CA分别平分∠ABC、∠DCB,所以∠DBC=∠ABC,∠ACB=∠DCB,因为∠ABC=∠DCB,所以∠DBC=∠ACB,在△ABC和△DCB中,所以△ABC≌△DCB(ASA),所以AC=DB.19.尺规作图:如图,已知△ABC.请在AC边上找一点D,使△ABD的周长等于AB+AC.(保留作图痕迹,不写作法)【分析】作线段BC的垂直平分线交AC于点D,连接BD即可.解:如图,点D即为所求作.20.如图,△ABC中,已知点A(﹣2,0),B(3,2),C(2,4).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1,B1,C1的坐标(﹣2,0),(3,﹣2),(2,﹣4).(2)作出△ABC关于直线x=1对称的△A2B2C2,并写出点A2,B2,C2的坐标(4,0),(﹣1,2),(0,4).(3)观察猜想:A1C1和A2C2的数量关系和位置关系:A1C1=A2C2,A1C1∥A2C2.(直接写出答案)【分析】(1)根据点A(﹣2,0),B(3,2),C(2,4).分别作出点A,B,C关于x轴的对称点,再顺次连接即可得;(2)分别作出点A,B,C关于直线x=1的对称点,再顺次连接即可得;(3)结合(1)和(2)即可得A1C1和A2C2的数量关系和位置关系.解:(1)如图,△A1B1C1即为所求;A1(﹣2,0),B1(3,﹣2),C1(2,﹣4);故答案为:(﹣2,0),(3,﹣2),(2,﹣4);(2)如图,△A2B2C2即为所求;A2(4,0),B2(﹣1,2),C2(0,4);故答案为:(4,0),(﹣1,2),(0,4);(3)根据网格可知:A1C1=A2C2,A1C1∥A2C2.故答案为:A1C1=A2C2,A1C1∥A2C2.21.下面是小明解决一道课本练习题的过程及反思,请认真阅读并完成相应学习任务:一道课后练习题的解答与思考问题:如图,要测量池塘两岸相对两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长.为什么?理由如下:因为AB⊥BD,ED⊥BD,所以∠ABC=∠EDC=90°.所以在△ABC和△EDC中,,所以△ABC≌△EDC(依据1),所以AB=ED(依据2),所以测得DE的长就是AB的长.反思:由于本题中AB∥ED,且C为BD的中点,因而可以用全等三角形的有关知识把AB的长度转化为DE的长度.所以当我们遇到“平行线和中点”的有关问题时,常常可以构造“X”型全等三角形解决问题,达到转化线段或角的目的.任务一:上述材料中的依据1,依据2分别指的是什么?依据1:两角和它们的夹边分别相等的两个三角形全等”或“角边角”或“ASA”;依据2:全等三角形的对应边相等.任务二:如图,四边形ABCD中,AD∥BC,点E是CD的中点,AE⊥BE.求证:AB=AD+BC.【分析】任务一:根据全等三角形的判定与性质即可得出答案;任务二:延长AE,交BC的延长线于点F,证明△ADE≌△FCE(AAS),得AD=FC,AE=FE,则BE垂直平分AF,即可证明结论.【解答】任务一:解:依据1:“两角和它们的夹边分别相等的两个三角形全等”或“角边角”或“ASA”;依据2:全等三角形的对应边相等;故答案为:两角和它们的夹边分别相等的两个三角形全等”或“角边角”或“ASA”,全等三角形的对应边相等;任务二:证明:延长AE,交BC的延长线于点F,因为AD∥CF所以∠DAE=∠F,因为点E是CD的中点,所以DE=CE,在△ADE和△FCE中,,所以△ADE≌△FCE(AAS),所以AD=FC,AE=FE,又因为AE⊥BE,所以BE垂直平分AF,所以BA=BF,因为BF=BC+CF,所以AB=AD+BC,22.综合与实践如图1,△ABC中,∠C=90°,AC=BC.点D是AB的中点,点E是CB上一点(不与点B,C重合),连接DE,以DE为直角边作等腰直角三角形DEF,其中∠EDF=90°,DE=DF.连接BF.(1)求证:BF=CE,BF⊥CE.(2)如图2,若点E在CB的延长线上,其他条件不变,BF与CE有怎样的数量关系和位置关系?请说明理由;(3)如图3,在(2)的基础上,当FB平分∠DFE时,若BE=3,则FG=6.(直接写出答案)【分析】(1)如图1,连接CD,先根据SAS证明△CDE≌△BDF,可得BF=CE,∠DBF=∠DCE=45°,根据角的和与垂直定义可得BF⊥CE;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度美食城损坏赔偿合同3篇
- 聊城大学农学院《禽病学》课件之V缺乏症
- 《不要游戏成瘾的》课件
- 棉田多元种植模式技术规程 第4部分:套春棉-地方标准格式审查稿
- 猪带绦虫病病因介绍
- 【课件】企业信用管理的组织设计培训教材
- 2024年度艺人经纪合同:丙公司代理丁先生演艺事务3篇
- (高考英语作文炼句)第29篇译文老师笔记
- 开题报告:制度变迁视域下教育科技人才一体化推进的实施路径研究
- 开题报告:云网融合的在线考试在大规模国家级考试中的应用研究
- 阿尔茨海默病量表
- 《磁盘阵列》课件
- 2024年广东省广州市白云区中考语文一模试卷
- 《送给新年的礼物》课件
- 变电站社会经济效益分析
- 《糖尿病足患者的护理措施》5000字(论文)
- 第五单元 方向与位置 单元测试(含答案)2024-2025学年四年级上册数学北师大版
- 湘豫名校联考2024年11月高三一轮复习诊断 历史试卷(含答案)
- 2024秋期国家开放大学本科《知识产权法》一平台在线形考(第一至四次形考任务)试题及答案
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 四川省高等教育自学考试自考毕业生登记表001汇编
评论
0/150
提交评论