浙江师范大学《人工智能与机器学习》2021-2022学年第一学期期末试卷_第1页
浙江师范大学《人工智能与机器学习》2021-2022学年第一学期期末试卷_第2页
浙江师范大学《人工智能与机器学习》2021-2022学年第一学期期末试卷_第3页
浙江师范大学《人工智能与机器学习》2021-2022学年第一学期期末试卷_第4页
浙江师范大学《人工智能与机器学习》2021-2022学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页浙江师范大学《人工智能与机器学习》

2021-2022学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的发展中,机器学习是一个重要的分支。假设一个医疗团队想要利用机器学习来预测某种疾病的发病风险,他们收集了大量患者的基因数据、生活习惯、病史等多维度信息。在选择机器学习算法时,需要考虑数据的特点、模型的复杂度和预测的准确性等因素。以下哪种机器学习算法可能最适合这个任务?()A.决策树算法,通过对特征的逐步划分进行预测B.线性回归算法,建立变量之间的线性关系进行预测C.支持向量机算法,寻找最优分类超平面进行分类预测D.朴素贝叶斯算法,基于概率计算进行分类2、在人工智能的机器翻译任务中,需要将一种语言翻译成另一种语言。假设要翻译的文本涉及专业领域的术语和特定的文化背景知识。以下哪种方法能够提高翻译的准确性和专业性?()A.使用通用的机器翻译模型,不进行任何定制B.结合领域词典和知识图谱进行翻译C.依靠人工翻译,不使用机器翻译D.随机选择翻译结果,不考虑准确性3、在人工智能的图像生成领域,生成对抗网络(GAN)取得了令人瞩目的成果。假设要生成逼真的艺术画作,同时具有独特的风格和创造力。以下哪种改进的GAN架构或训练方法能够更好地实现这一目标?()A.条件GANB.循环GANC.自监督GAND.以上方法结合使用4、在人工智能的药物研发中,机器学习可以辅助药物分子的设计和筛选。假设要开发一种治疗特定疾病的新药,以下哪种机器学习方法可能最有助于找到潜在的有效分子结构?()A.分类算法B.回归分析C.聚类分析D.强化学习5、在人工智能的数据分析中,假设要从大量的数据中发现潜在的模式和关系,以下关于数据分析方法的描述,正确的是:()A.关联规则挖掘只能发现简单的关联关系,无法处理复杂的数据结构B.聚类分析可以将数据自动分为不同的类别,但类别数量需要事先指定C.主成分分析能够降低数据的维度,同时保留主要的信息D.以上数据分析方法在实际应用中通常单独使用,不需要结合其他方法6、人工智能中的图像超分辨率技术可以将低分辨率图像转换为高分辨率图像。假设要在保持图像细节的同时提高超分辨率效果,以下哪个因素是最关键的?()A.神经网络的深度B.训练数据的质量C.损失函数的选择D.优化器的性能7、人工智能中的多模态学习旨在融合多种不同类型的数据,如图像、文本和音频。假设要开发一个能够同时理解图像和文本内容的系统,以下哪个挑战是最突出的?()A.数据的标注和对齐B.模型的训练效率C.不同模态数据的特征提取D.模型的可扩展性8、强化学习是人工智能中的一种学习方法,常用于训练智能体在环境中做出最优决策。假设一个机器人需要通过强化学习来学习如何在复杂的环境中行走而不摔倒。以下关于强化学习的描述,哪一项是不正确的?()A.智能体通过与环境进行交互,根据获得的奖励来调整自己的行为策略B.强化学习需要大量的试验和错误来找到最优策略,计算成本较高C.可以用于解决连续动作空间和高维度状态空间的问题D.强化学习不需要对环境有任何先验知识,完全依靠随机探索来学习9、人工智能中的模型评估指标对于衡量模型性能至关重要。假设要评估一个二分类模型的性能,除了准确率之外,以下哪种指标在某些情况下更能反映模型的实际效果,特别是当类别分布不均衡时?()A.召回率B.F1值C.精确率D.均方误差10、人工智能在金融领域的风险评估和欺诈检测中发挥着重要作用。假设要构建一个系统来检测信用卡交易中的欺诈行为,需要实时分析交易数据和用户行为模式。以下哪种技术或方法在处理这种实时、动态的数据时最为有效?()A.实时数据分析和监控B.离线批量处理和分析C.基于经验的规则判断D.随机抽样检查11、在人工智能的模型评估中,需要选择合适的指标来衡量模型的性能。假设一个图像分类模型,以下关于模型评估指标的描述,正确的是:()A.准确率是唯一重要的评估指标,其他指标如召回率和F1值都不重要B.对于不平衡的数据集,准确率可能会产生误导,应该使用更合适的指标如召回率和F1值C.模型评估指标只与模型的架构有关,与数据分布无关D.选择评估指标时不需要考虑具体的应用场景和需求12、人工智能在医疗影像诊断中的应用不断发展。假设一个医院要引入人工智能辅助诊断系统来检测癌症。以下关于该应用的描述,哪一项是错误的?()A.能够提高诊断的准确性和效率,减少漏诊和误诊的情况B.可以与医生的经验和判断相结合,提供更全面的诊断依据C.人工智能诊断系统可以完全取代病理医生的工作,独立做出诊断结论D.需要经过严格的临床试验和验证,确保其安全性和有效性13、在人工智能的情感计算领域,除了文本和语音,面部表情的分析也具有重要意义。假设要开发一个能够实时分析人类面部表情来推断情感状态的系统,以下哪种方法在准确性和实时性方面面临更大的挑战?()A.基于传统计算机视觉的方法B.基于深度学习的方法C.基于传感器的方法D.以上方法难度相当14、人工智能中的生成对抗网络(GAN)是一种创新的模型架构。以下关于GAN的说法,不正确的是()A.GAN由生成器和判别器组成,通过两者之间的对抗训练来生成逼真的数据B.GAN在图像生成、文本生成和数据增强等领域取得了显著的成果C.GAN的训练过程稳定,容易收敛到最优解D.GAN的应用存在一些潜在的问题,如模式崩溃和训练不稳定等15、人工智能中的语音识别技术正在改变人们与计算机的交互方式。假设要开发一个能够准确识别不同口音和语速的语音识别系统。以下关于语音识别的描述,哪一项是不准确的?()A.特征提取是语音识别中的关键步骤,用于将语音信号转换为可处理的特征向量B.声学模型和语言模型共同作用,提高语音识别的准确率C.语音识别系统对于背景噪音和多人同时说话的场景能够轻松应对,不受任何影响D.不断增加训练数据的多样性和规模,可以改善语音识别系统在复杂场景下的性能二、简答题(本大题共4个小题,共20分)1、(本题5分)简述深度强化学习的进展和应用。2、(本题5分)解释早停法在模型训练中的应用。3、(本题5分)简述视频分析中的关键技术。4、(本题5分)简述计算机视觉的研究内容和应用。三、操作题(本大题共5个小题,共25分)1、(本题5分)使用Python中的Scikit-learn库,实现AffinityPropagation聚类算法对数据进行聚类,分析算法在不同类型数据上的适用性。2、(本题5分)使用自然语言处理库,对法律文档进行信息抽取,提取出案件的关键信息,如当事人、时间、地点、事件等。构建法律知识图谱,为法律研究和案例分析提供帮助。3、(本题5分)使用OpenCV和深度学习模型,实现对人脸表情的识别。分析不同表情的特征和识别准确率。4、(本题5分)在PyTorch中,构建一个对抗样本生成模型,对图像分类模型进行攻击。分析攻击的效果和模型的鲁棒性,研究防御对抗攻击的方法。5、(本题5分)利用自然语言处理技术进行文本自动摘要生成,对新闻报道进行概括,方便用户快速了解重要信息。四、案例分析题(本大题共4个小题,共40分)1、(本题10分)剖析某电商平台

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论