版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第03讲等式与不等式的性质目录TOC\o"1-2"\h\z\u01模拟基础练 2题型一:不等式性质的应用 2题型二:比较数(式)的大小与比较法证明不等式 2题型三:已知不等式的关系,求目标式的取值范围 2题型四:不等式的综合问题 3题型五:糖水不等式 302重难创新练 403真题实战练 6题型一:不等式性质的应用1.(2024·上海杨浦·二模)已知实数,,,满足:,则下列不等式一定正确的是(
)A. B. C. D.2.(多选题)已知,,且,则下列不等式一定成立的是(
)A. B.C. D.3.(多选题)下列不等式中,推理正确的是(
)A.若,则 B.若,则C.若,则 D.若,则4.(多选题)已知,下列说法正确的是(
)A. B.C.若,则 D.若,则题型二:比较数(式)的大小与比较法证明不等式5.设,,则、的大小关系是.6.若,,则与的大小关系为.(用“”连接)7.若,则、、、中最小的是.8.,则的大小关系为.题型三:已知不等式的关系,求目标式的取值范围9.(多选题)已知,,则(
)A.的取值范围为 B.的取值范围为C.ab的取值范围为 D.的取值范围为10.若,则的取值范围是(
)A. B. C. D.11.已知,,则的取值范围是()A. B.C. D.12.(多选题)已知实数,满足,,则可能取的值为(
)A. B. C. D.题型四:不等式的综合问题13.(2024·河北石家庄·二模)若实数,且,则的取值范围是.14.(2024·河北邯郸·三模)记表示x,y,z中最小的数.设,,则的最大值为.15.(多选题)已知a,b>0且2a+b=1,则的值不可能是()A.7 B.8 C.9 D.10题型五:糖水不等式16.糖水不等式:成立的实数是有条件限制的,使糖水不等式:不成立的的值可以是(只需填满足题意的一个值即可).17.已知克糖水中含有克糖(),再添加克糖()(假设全部溶解),糖水变甜了.(1)请将这一事实表示为一个不等式,并加以证明;(2)已知,小明同学判断添加克糖前后的两杯糖水中的含糖浓度值之差的绝对值肯定小于,判断是否正确,并说明理由.()18.(多选题)在a克的糖水中含有b克的糖(),再添加少许的糖m克(),全部溶解后糖水更甜了,由此得糖水不等式,若,则(
)A.若,则 B.若,则C. D.当时,.19.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“”作为等号使用,后来英国数学家哈利奥特首次使用“”和“”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.如糖水在日常生活中经常见到,可以说大部分人都喝过糖水.如果克糖水中含有克糖(),再添加克糖()(假设全部溶解),糖水变甜了,将这一事实表示为不等式正确的是(
)A. B.C. D.1.(2024·陕西安康·模拟预测)若满足,则(
)A. B.C. D.2.(2024·全国·模拟预测)若,则下列不等式一定成立的是(
)A. B. C. D.3.(2024·河北沧州·一模)下列命题为真命题的是(
)A. B.C. D.4.(2024·四川成都·模拟预测)命题“”是“,且”的(
)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.(2024·江西·模拟预测)已知,,,则下列选项中是“”的一个充分不必要条件的是(
)A. B.C. D.6.(2024·山东潍坊·模拟预测)若正数满足,则的取值范围是(
)A. B. C. D.7.若,则下列不等式成立的是(
)A. B. C. D.8.已知,则(
)A. B.C. D.9.(多选题)(2024·广西·二模)已知实数a,b,c满足,且,则下列结论中正确的是(
)A. B.C. D.10.(多选题)(2024·湖北·模拟预测)已知,,且,则(
)A., B.C.的最小值为,最大值为4 D.的最小值为1211.(多选题)(2024·全国·模拟预测)已知,且,则下列结论成立的是(
)A. B.C.存在使得 D.若且,则12.(多选题)(2024·海南省直辖县级单位·模拟预测)已知实数满足,则(
)A. B.C. D.当最小时,13.若,,,则的取值范围为14.购买同一种物品可以用两种不同的策略,不考虑物品价格的升降,甲策略是每次购买这种物品的数量一定,乙策略是每次购买这种物品所花的钱数一定,则种购物策略比较经济.15.(2024·湖北·三模)若实数x,y,z,t满足则的最小值为.16.表示三个数中的最大值,对任意的正实数,,则的最小值是.1.(2017年全国普通高等学校招生统一考试理科数学(山东卷精编版))若a>b>0,且ab=1,则下列不等式成立的是()A. B.C. D.2.(2014年全国普通高等学校招生统一考试文科数学(山东卷))已知实数满足,则下列关系式恒成立的是A.B.C.D.3.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版))若,,则A. B. C. D.4.(2015年全国普通高等学校招生统一考试文科数学(浙江卷))有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:)分别为,,,且,三种颜色涂料的粉刷费用(单位:元/)分别为,,,且.在不同的方案中,最低的总费用(单位:元)是A. B. C. D.5.(2014年全国普通高等学校招生统一考试理科数学(四川卷))若则一定有A. B. C. D.6.(2017年全国普通高等学校招生统一考试理科数学(北京卷精编版))能够说明“设是任意实数,若,则”是假命题的一组整数的值依次为.7.(2010年普通高等学校招生全国统一考试(辽宁卷)理科数学)已知且,则的取值范围是(答案用区间表示)8.(2010年普通高等学校招生全国统一考试(江苏卷)数学试题)设实数满足,则的最大值是_________第03讲等式与不等式的性质目录TOC\o"1-2"\h\z\u01模拟基础练 2题型一:不等式性质的应用 2题型二:比较数(式)的大小与比较法证明不等式 3题型三:已知不等式的关系,求目标式的取值范围 4题型四:不等式的综合问题 5题型五:糖水不等式 702重难创新练 903真题实战练 16题型一:不等式性质的应用1.(2024·上海杨浦·二模)已知实数,,,满足:,则下列不等式一定正确的是(
)A. B. C. D.【答案】C【解析】对于ABD,取,满足,显然,,,ABD错误;对于C,,则,C正确.故选:C2.(多选题)已知,,且,则下列不等式一定成立的是(
)A. B.C. D.【答案】BD【解析】对于A,取,满足,取,有,A错误;对于B,由,得,而,因此,B正确;对于C,取,,C错误;对于D,由,得,因此,D正确.故选:BD3.(多选题)下列不等式中,推理正确的是(
)A.若,则 B.若,则C.若,则 D.若,则【答案】CD【解析】对于A中,例如,此时,所以A错误;对于B中,若,可得,则,所以B错误;对于C中,由,可得,可得,即,所以C正确;对于D中,,由不等式的性质,可得,所以D正确.故选:CD.4.(多选题)已知,下列说法正确的是(
)A. B.C.若,则 D.若,则【答案】ABC【解析】时,由函数在上单调递增,有,即,移项得,故A选项正确;由基本不等式,时,,因为,等号不成立,所以,故B选项正确;若,,则,故C选项正确;若,则,不一定成立,如,,满足且,不成立,故D选项错误.故选:ABC.题型二:比较数(式)的大小与比较法证明不等式5.设,,则、的大小关系是.【答案】/【解析】因为,,所以,当且仅当时取等号,所以.故答案为:6.若,,则与的大小关系为.(用“”连接)【答案】【解析】,因为,,则,,所以.故答案为:.7.若,则、、、中最小的是.【答案】【解析】因为,所以,,因为,,所以,即故答案为:8.,则的大小关系为.【答案】≥【解析】因为,则由所以故答案为:题型三:已知不等式的关系,求目标式的取值范围9.(多选题)已知,,则(
)A.的取值范围为 B.的取值范围为C.ab的取值范围为 D.的取值范围为【答案】AC【解析】因为,,所以,,,所以,的取值范围为,的取值范围为,故A选项正确,B选项错误;因为,,所以,,,,所以,ab的取值范围为,的取值范围为故C选项正确,D选项错误.故选:AC10.若,则的取值范围是(
)A. B. C. D.【答案】C【解析】由题设,则,又,所以.故选:C11.已知,,则的取值范围是()A. B.C. D.【答案】D【解析】由,,得,即,,所以,即,故选:D12.(多选题)已知实数,满足,,则可能取的值为(
)A. B. C. D.【答案】BC【解析】由题意,实数,满足,,令,即,可得,解得,所以,则,,所以.故选:BC.题型四:不等式的综合问题13.(2024·河北石家庄·二模)若实数,且,则的取值范围是.【答案】【解析】因为,故,由得,解得,故.故答案为:14.(2024·河北邯郸·三模)记表示x,y,z中最小的数.设,,则的最大值为.【答案】2【解析】若,则,此时,因为,所以和中至少有一个小于等于2,所以,又当,时,,所以的最大值为2.若,则,此时,因为,所以和中至少有一个小于2,所以.综上,的最大值为2.故答案为:2.15.(多选题)已知a,b>0且2a+b=1,则的值不可能是()A.7 B.8 C.9 D.10【答案】ABD【解析】由题可知:所以所以原式原式,由a,b>0,所以又故故选:ABD题型五:糖水不等式16.糖水不等式:成立的实数是有条件限制的,使糖水不等式:不成立的的值可以是(只需填满足题意的一个值即可).【答案】0(答案不唯一)【解析】因为,所以,所以,所以或.使糖水不等式不成立的的值可以是0.故答案为:0(答案不唯一)17.已知克糖水中含有克糖(),再添加克糖()(假设全部溶解),糖水变甜了.(1)请将这一事实表示为一个不等式,并加以证明;(2)已知,小明同学判断添加克糖前后的两杯糖水中的含糖浓度值之差的绝对值肯定小于,判断是否正确,并说明理由.()【解析】(1)不等式:已知,,则.证明:,因为,则,所以,即.(2)答:小明同学判断正确,理由如下:两杯糖水的含糖浓度值之差的绝对值,不妨设(),记(),化简得,又,则,当且仅当,即时,的最大值小于,综上:添加克糖前后的两杯糖水的含糖浓度值之差的绝对值肯定小于.18.(多选题)在a克的糖水中含有b克的糖(),再添加少许的糖m克(),全部溶解后糖水更甜了,由此得糖水不等式,若,则(
)A.若,则 B.若,则C. D.当时,.【答案】ABC【解析】由,则,若,若,则,故;若,则,故;由题设,结合不等式性质显然有;故选:ABC19.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“”作为等号使用,后来英国数学家哈利奥特首次使用“”和“”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.如糖水在日常生活中经常见到,可以说大部分人都喝过糖水.如果克糖水中含有克糖(),再添加克糖()(假设全部溶解),糖水变甜了,将这一事实表示为不等式正确的是(
)A. B.C. D.【答案】A【解析】由题意可知,加入克糖()后糖水变甜了,即糖水的浓度增加了,加糖之前,糖水的浓度为:;加糖之后,糖水的浓度为:;所以.故选:A.1.(2024·陕西安康·模拟预测)若满足,则(
)A. B.C. D.【答案】C【解析】由,得,所以,所以,所以错误;令,此时与无意义,所以错误;因为,所以由不等式的性质可得,所以正确;令,则,所以错误.故选:.2.(2024·全国·模拟预测)若,则下列不等式一定成立的是(
)A. B. C. D.【答案】D【解析】因为,所以,当时,解得;当时,解得,所以,即,A,B错误.当时,,C错误.因为在上单调递减,在上单调递增,所以,即,D正确.故选:D.3.(2024·河北沧州·一模)下列命题为真命题的是(
)A. B.C. D.【答案】A【解析】对于AC,当时,,所以,故A正确,C错误;对于B,当时,,故B错误;对于D,,因为,所以,故D错误.故选:A.4.(2024·四川成都·模拟预测)命题“”是“,且”的(
)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C故选:C.5.(2024·江西·模拟预测)已知,,,则下列选项中是“”的一个充分不必要条件的是(
)A. B.C. D.6.(2024·山东潍坊·模拟预测)若正数满足,则的取值范围是(
)A. B. C. D.【答案】A【解析】由题意知为正数,且,所以,化简得,解得,当且仅当时取等号,所以,故A正确.故选:A.7.若,则下列不等式成立的是(
)A. B. C. D.【答案】B故选:B8.已知,则(
)A. B.C. D.9.(多选题)(2024·广西·二模)已知实数a,b,c满足,且,则下列结论中正确的是(
)A. B.C. D.所以不成立,故,即,D正确.故选:AD10.(多选题)(2024·湖北·模拟预测)已知,,且,则(
)A., B.C.的最小值为,最大值为4 D.的最小值为1211.(多选题)(2024·全国·模拟预测)已知,且,则下列结论成立的是(
)A. B.C.存在使得 D.若且,则所以,得,C错误.对于D,由,得.由,得.因为,所以,所以,D正确.故选:ABD.12.(多选题)(2024·海南省直辖县级单位·模拟预测)已知实数满足,则(
)A. B.C. D.当最小时,即,可得.故答案为:.14.购买同一种物品可以用两种不同的策略,不考虑物品价格的升降,甲策略是每次购买这种物品的数量一定,乙策略是每次购买这种物品所花的钱数一定,则种购物策略比较经济.15.(2024·湖北·三模)若实数x,y,z,t满足则的最小值为.16.表示三个数中的最大值,对任意的正实数,,则的最小值是.1.(2017年全国普通高等学校招生统一考试理科数学(山东卷精编版))若a>b>0,且ab=1,则下列不等式成立的是()A. B.C. D.【答案】B【解析】因为,且,所以设,则,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (高考英语作文炼句)第31篇译文老师笔记
- 开题报告:制度育德的现实考量与实践路径研究
- 开题报告:运用大数据智能分析实现精准测评教学的研究
- 开题报告:以促进青少年道德判断为核心的道德教育实效性研究
- 《全过程质量管理》课件
- 开题报告:新时代老年教育服务体系建设研究
- 开题报告:新时代初中生阅读素养发展指数建构与应用研究
- 《激光对刀仪说明书》课件
- 2024年度辣椒种植技术培训与采购合同3篇
- 基于2024年度的云计算服务合作协议2篇
- DL∕T 860.10-2018 电力自动化通信网络和系统 第10部分:一致性测试
- 2024年安徽淮南高新区管委会招聘工作人员12人历年(高频重点提升专题训练)共500题附带答案详解
- (新版)碳排放管理员(高级)职业鉴定考试题库(含答案)
- 施工前技术交底会
- 文学概论2024年 知到智慧树网课答案
- 2024年宝鸡市高考模拟检测 ( 一 ) 一模 英语试卷(含答案)
- GB/T 13077-2024铝合金无缝气瓶定期检验与评定
- 工程设计合理化建议
- 基坑工程安全风险辨识
- 设计质量、进度、服务保证措施
- 电容器寿命预测与评估方法
评论
0/150
提交评论