![浙大城市学院《深度学习理论与实践》2021-2022学年第一学期期末试卷_第1页](http://file4.renrendoc.com/view14/M00/1D/20/wKhkGWdgKT-AKpjlAAMp67-zM6g069.jpg)
![浙大城市学院《深度学习理论与实践》2021-2022学年第一学期期末试卷_第2页](http://file4.renrendoc.com/view14/M00/1D/20/wKhkGWdgKT-AKpjlAAMp67-zM6g0692.jpg)
![浙大城市学院《深度学习理论与实践》2021-2022学年第一学期期末试卷_第3页](http://file4.renrendoc.com/view14/M00/1D/20/wKhkGWdgKT-AKpjlAAMp67-zM6g0693.jpg)
![浙大城市学院《深度学习理论与实践》2021-2022学年第一学期期末试卷_第4页](http://file4.renrendoc.com/view14/M00/1D/20/wKhkGWdgKT-AKpjlAAMp67-zM6g0694.jpg)
![浙大城市学院《深度学习理论与实践》2021-2022学年第一学期期末试卷_第5页](http://file4.renrendoc.com/view14/M00/1D/20/wKhkGWdgKT-AKpjlAAMp67-zM6g0695.jpg)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页浙大城市学院《深度学习理论与实践》
2021-2022学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在一个强化学习场景中,智能体在探索新的策略和利用已有的经验之间需要进行平衡。如果智能体过于倾向于探索,可能会导致效率低下;如果过于倾向于利用已有经验,可能会错过更好的策略。以下哪种方法可以有效地控制这种平衡?()A.调整学习率B.调整折扣因子C.使用ε-贪婪策略,控制探索的概率D.增加训练的轮数2、在进行特征选择时,有多种方法可以评估特征的重要性。假设我们有一个包含多个特征的数据集。以下关于特征重要性评估方法的描述,哪一项是不准确的?()A.信息增益通过计算特征引入前后信息熵的变化来衡量特征的重要性B.卡方检验可以检验特征与目标变量之间的独立性,从而评估特征的重要性C.随机森林中的特征重要性评估是基于特征对模型性能的贡献程度D.所有的特征重要性评估方法得到的结果都是完全准确和可靠的,不需要进一步验证3、在构建机器学习模型时,选择合适的正则化方法可以防止过拟合。假设我们正在训练一个逻辑回归模型。以下关于正则化的描述,哪一项是错误的?()A.L1正则化会使部分模型参数变为0,从而实现特征选择B.L2正则化通过对模型参数的平方和进行惩罚,使参数值变小C.正则化参数越大,对模型的约束越强,可能导致模型欠拟合D.同时使用L1和L2正则化(ElasticNet)总是比单独使用L1或L2正则化效果好4、在深度学习中,批量归一化(BatchNormalization)的主要作用是()A.加速训练B.防止过拟合C.提高模型泛化能力D.以上都是5、在进行模型融合时,以下关于模型融合的方法和作用,哪一项是不准确的?()A.可以通过平均多个模型的预测结果来进行融合,降低模型的方差B.堆叠(Stacking)是一种将多个模型的预测结果作为输入,训练一个新的模型进行融合的方法C.模型融合可以结合不同模型的优点,提高整体的预测性能D.模型融合总是能显著提高模型的性能,无论各个模型的性能如何6、某研究需要对一个大型数据集进行降维,同时希望保留数据的主要特征。以下哪种降维方法在这种情况下可能较为合适?()A.主成分分析(PCA)B.线性判别分析(LDA)C.t-分布随机邻域嵌入(t-SNE)D.自编码器7、假设正在开发一个自动驾驶系统,其中一个关键任务是目标检测,例如识别道路上的行人、车辆和障碍物。在选择目标检测算法时,需要考虑算法的准确性、实时性和对不同环境的适应性。以下哪种目标检测算法在实时性要求较高的场景中可能表现较好?()A.FasterR-CNN,具有较高的检测精度B.YOLO(YouOnlyLookOnce),能够实现快速检测C.SSD(SingleShotMultiBoxDetector),在精度和速度之间取得平衡D.以上算法都不适合实时应用8、在一个图像识别任务中,数据存在类别不平衡的问题,即某些类别的样本数量远远少于其他类别。以下哪种处理方法可能是有效的?()A.过采样少数类样本,增加其数量,但可能导致过拟合B.欠采样多数类样本,减少其数量,但可能丢失重要信息C.生成合成样本,如使用SMOTE算法,但合成样本的质量难以保证D.以上方法结合使用,并结合模型调整进行优化9、在强化学习中,智能体通过与环境进行交互来学习最优策略。假设一个机器人需要在复杂的环境中找到通往目标的最佳路径,并且在途中会遇到各种障碍和奖励。在这种情况下,以下哪种强化学习算法可能更适合解决这个问题?()A.Q-learning算法,通过估计状态-动作值函数来选择动作B.SARSA算法,基于当前策略进行策略评估和改进C.策略梯度算法,直接优化策略的参数D.以上算法都不适合,需要使用专门的路径规划算法10、在一个图像生成的任务中,需要根据给定的描述或条件生成逼真的图像。考虑到生成图像的质量、多样性和创新性。以下哪种生成模型可能是最有潜力的?()A.生成对抗网络(GAN),通过对抗训练生成逼真的图像,但可能存在模式崩溃和训练不稳定的问题B.变分自编码器(VAE),能够学习数据的潜在分布并生成新样本,但生成的图像可能较模糊C.自回归模型,如PixelCNN,逐像素生成图像,保证了局部一致性,但生成速度较慢D.扩散模型,通过逐步去噪生成图像,具有较高的质量和多样性,但计算成本较高11、过拟合是机器学习中常见的问题之一。以下关于过拟合的说法中,错误的是:过拟合是指模型在训练数据上表现很好,但在测试数据上表现不佳。过拟合的原因可能是模型过于复杂或者训练数据不足。那么,下列关于过拟合的说法错误的是()A.增加训练数据可以缓解过拟合问题B.正则化是一种常用的防止过拟合的方法C.过拟合只在深度学习中出现,传统的机器学习算法不会出现过拟合问题D.可以通过交叉验证等方法来检测过拟合12、在一个分类问题中,如果数据集中存在噪声和错误标签,以下哪种模型可能对这类噪声具有一定的鲁棒性?()A.集成学习模型B.深度学习模型C.支持向量机D.决策树13、在机器学习中,特征工程是非常重要的一步。假设我们要预测一个城市的空气质量,有许多相关的原始数据,如气象数据、交通流量、工厂排放等。以下关于特征工程的描述,哪一项是不准确的?()A.对原始数据进行标准化或归一化处理,可以使不同特征在数值上具有可比性B.从原始数据中提取新的特征,例如计算交通流量的日变化率,有助于提高模型的性能C.特征选择是选择对目标变量有显著影响的特征,去除冗余或无关的特征D.特征工程只需要在模型训练之前进行一次,后续不需要再进行调整和优化14、在一个异常检测问题中,例如检测网络中的异常流量,数据通常呈现出正常样本远远多于异常样本的情况。如果使用传统的监督学习算法,可能会因为数据不平衡而导致模型对异常样本的检测能力不足。以下哪种方法更适合解决这类异常检测问题?()A.构建一个二分类模型,将数据分为正常和异常两类B.使用无监督学习算法,如基于密度的聚类算法,识别异常点C.对数据进行平衡处理,如复制异常样本,使正常和异常样本数量相等D.以上方法都不适合,异常检测问题无法通过机器学习解决15、假设正在进行一个异常检测任务,数据具有高维度和复杂的分布。以下哪种技术可以用于将高维数据映射到低维空间以便更好地检测异常?()A.核主成分分析(KPCA)B.局部线性嵌入(LLE)C.拉普拉斯特征映射D.以上技术都可以二、简答题(本大题共3个小题,共15分)1、(本题5分)解释如何使用机器学习进行冰川变化监测。2、(本题5分)什么是终身学习?它的关键技术有哪些?3、(本题5分)什么是集成学习?举例说明常见的集成学习方法。三、论述题(本大题共5个小题,共25分)1、(本题5分)论述机器学习在社交媒体分析中的应用。讨论用户行为分析、情感分析、社交网络分析等方面的机器学习方法和应用效果。2、(本题5分)探讨机器学习在图书馆管理中的应用,如图书推荐、读者行为分析等,分析其对图书馆服务的提升。3、(本题5分)论述在机器学习模型压缩中,剪枝和量化的方法和效果。研究如何在保持性能的前提下减少模型参数和计算量。4、(本题5分)结合实际案例,论述机器学习在气象预报中的应用。探讨天气预报、灾害预警、气候分析等方面的机器学习技术和应用前景。5、(本题5分)探讨机器学习中的半监督学习算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科研楼翻新合同终止通知
- 书店装修员工合同样本
- 自然人借款合同样本
- 三农村资源综合利用路径规划
- 电子政务平台建设及管理手册
- 农业信息化建设与管理作业指导书
- 担保借款合同书
- 聘请博士协议书
- 项目管理与协调能力作业指导书
- 农产品食品安全与质量控制标准作业指导书
- 建设用地报批服务投标方案(技术方案)
- 精装修室内施工组织部署
- 农用拖拉机考试题库
- GJB438C模板-软件开发计划(已按标准公文格式校准)
- 2023年政府采购评审专家考试真题及答案
- 云端数据加密与密钥管理解决方案
- 毒麻药品试题答案
- 医疗器械专业知识培训课件
- 传统体育养生学
- DB4401∕T 33-2019 电梯托管标准化管理规范
- 医院物业(保洁)技术服务投标方案
评论
0/150
提交评论