![正弦函数余弦函数的性质教案(人教A版)_第1页](http://file4.renrendoc.com/view14/M09/1E/11/wKhkGWdfp92Abq8sAAH5sGbXI4g350.jpg)
![正弦函数余弦函数的性质教案(人教A版)_第2页](http://file4.renrendoc.com/view14/M09/1E/11/wKhkGWdfp92Abq8sAAH5sGbXI4g3502.jpg)
![正弦函数余弦函数的性质教案(人教A版)_第3页](http://file4.renrendoc.com/view14/M09/1E/11/wKhkGWdfp92Abq8sAAH5sGbXI4g3503.jpg)
![正弦函数余弦函数的性质教案(人教A版)_第4页](http://file4.renrendoc.com/view14/M09/1E/11/wKhkGWdfp92Abq8sAAH5sGbXI4g3504.jpg)
![正弦函数余弦函数的性质教案(人教A版)_第5页](http://file4.renrendoc.com/view14/M09/1E/11/wKhkGWdfp92Abq8sAAH5sGbXI4g3505.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4.2正弦函数、余弦函数的性质●三维目标1.知识与技能(1)理解周期函数、周期函数的周期和最小正周期的定义.(2)掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期.2.过程与方法让学生通过观察正、余弦线以及正、余弦函数图象得出正、余弦函数的周期性,并借助于诱导公式一给予代数论证这一过程,使学生学会由具体形象到抽象概括这一研究问题的方法.3.情感,态度与价值观让学生自己探究学习正、余弦函数的图象性质,领会从特殊推广到一般的数学思想,体会三角函数图象所蕴涵的和谐美,激发学生学数学的兴趣.●重点、难点重点:正弦函数、余弦函数的图象及其主要性质(包括周期性、单调性、奇偶性、最值或值域);深化研究函数性质的思想方法.难点:正弦函数和余弦函数的周期性,以及周期函数、(最小正)周期的意义.●教学建议对于函数性质的研究,学生已经有些经验.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就是完全清楚了,因此,教科书把对周期性的研究放在了首位.另外,要使学生明白研究三角函数性质就是“要研究这类函数具有的共同特点”,这是对数学思考方向的一种引导.1.周期性可引导学生从正、余弦线,正、余弦函数图象以及诱导公式一即形与数两个方面,归纳总结“周而复始”的变化规律,给出“周期性”概念.关于正弦函数、余弦函数的周期与最小正周期,一般只要弄清定义,并根据正弦、余弦曲线观察出结果就可以了.对于学有余力的学生,可以让他们尝试证明正弦、余弦函数的最小正周期是2π.2.其他性质与研究周期性的方法一样,根据正弦函数、余弦函数图象及函数解析式,同样可以直观地看出这两个函数的奇偶性、单调性、最大(小)值等性质.值得注意的是,对于周期函数性质的讨论,只要认识清楚它在一个周期内的性质,就可以得到它在整个定义域内的性质.(1)正弦函数、余弦函数的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.所以,这一性质的研究可以交给学生自主完成.(2)正弦函数、余弦函数的单调性,只要求由图象观察,不要求证明.教学中要注意引导学生根据函数图象以及《数学1》中给出的增(减)函数定义进行描述.具体的,可以先选择一个恰当的区间(这个区间长为一个周期,且仅有一个单增区间和一个单减区间),对正弦函数在这个区间上的单调性进行描述;然后利用正弦函数的周期性说明在其他区间上的单调性.对于余弦函数的单调性,可让学生类比正弦函数的单调性自己描述.另外,从一个周期的区间推广到整个定义域上去时,学生会有些不习惯,教学中要留给学生一定的思考时间,由他们自己归纳出正弦函数、余弦函数的单调区间的一般形式.正弦函数、余弦函数的最大值和最小值可以作为单调性的一个推论.由于问题比较简单,所以可以由学生自己去研究.同样的,对于取最大(小)值时的自变量x的一般形式,也要注意引导学生利用周期性进行正确归纳.●教学流程课标解读1.掌握y=sinx(x∈R),y=cosx(x∈R)的周期性、奇偶性、单调性和最值.(重点)2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点)3.了解周期函数、周期、最小正周期的含义.(易混点)知识点1函数的周期性【问题导思】1.观察下列实例:(1)海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次.(2)钟表上的时针每经过12小时运行一周,分针每经过1小时运行一周,秒针每经过1分钟运行一周.上述两种现象,具有怎样的属性?【提示】周而复始,重复出现.2.观察正弦曲线和余弦曲线,正弦函数和余弦函数具有上述规律吗?哪个公式可以反映这种规律?【提示】具有.sin(x+2kπ)=sinx,cos(x+2kπ)=cosx.1.函数的周期性(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数叫做f(x)的最小正周期.2.两种特殊的周期函数(1)正弦函数y=sinx是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.(2)余弦函数y=cosx是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.知识点2正、余弦函数的奇偶性【问题导思】对于x∈R,sin(-x)=-sinx,cos(-x)=cosx,这说明正、余弦函数具备怎样的性质?【提示】奇偶性.1.对于y=sinx,x∈R恒有sin(-x)=-sinx,所以正弦函数y=sinx是奇函数,正弦曲线关于原点对称.2.对于y=cosx,x∈R恒有cos(-x)=cosx,所以余弦函数y=cosx是偶函数,余弦曲线关于y轴对称.知识点3正、余弦函数的定义域、值域和单调性【问题导思】观察正弦函数、余弦函数的图象:1.正弦函数、余弦函数的定义域各是什么?【提示】R2.正弦函数、余弦函数的值域各是什么?【提示】[-1,1].3.正弦函数在[-eq\f(π,2),eq\f(3π,2)]上函数值的变化有什么特点?余弦函数在[0,2π]上函数值的变化有什么特点?【提示】y=sinx在[-eq\f(π,2),eq\f(π,2)]上,曲线逐渐上升,是增函数,函数值y由-1增大到1;在[eq\f(π,2),eq\f(3π,2)]上,曲线逐渐下降,是减函数,函数值y由1减小到-1;y=cosx在[0,π]上,曲线逐渐下降,是减函数,函数值由1减小到-1;在[π,2π]上,曲线逐渐上升,是增函数,函数值由-1增大到1.函数名称图象与性质性质分类y=sinxy=cosx相同处定义域RR值域[-1,1][-1,1]周期性最小正周期为2π最小正周期为2π不同处图象奇偶性奇函数偶函数单调性在[2kπ-eq\f(π,2),2kπ+eq\f(π,2)](k∈Z)上是增函数;在[2kπ+eq\f(π,2),2kπ+eq\f(3,2)π](k∈Z)上是减函数在[2kπ-π,2kπ](k∈Z)上是增函数;在[2kπ,2kπ+π](k∈Z)上减函数对称轴x=kπ+eq\f(π,2)(k∈Z)x=kπ(k∈Z)对称中心(kπ,0),(k∈Z)(kπ+eq\f(π,2),0)(k∈Z)最值x=2kπ+eq\f(π,2)(k∈Z)时,ymax=1;x=2kπ-eq\f(π,2)(k∈Z)时,ymin=-1x=2kπ时,ymax=1;x=2kπ+π时,ymin=-1类型1求三角函数的周期例1求下列函数的最小正周期:(1)y=sin(eq\f(π,2)x+3);(2)y=|cosx|.【思路探究】解答本题(1)可利用代换z=eq\f(π,2)x+3,将求原来函数的周期转化为求y=sinz的周期再求解,或利用公式求解;(2)可通过图象求周期.【自主解答】(1)法一令z=eq\f(π,2)x+3,且y=sinz的最小正周期为2π.∴sin(eq\f(π,2)x+3+2π)=sin[eq\f(π,2)(x+4)+3],因此sin(eq\f(π,2)x+3)=sin[eq\f(π,2)(x+4)+3].∴由周期函数定义,T=4是y=sin(eq\f(π,2)x+3)的最小正周期.法二f(x)=sin(eq\f(π,2)x+3)的周期T=eq\f(2π,\f(π,2))=4.(2)作y=|cosx|的图象,如图所示:由图象知y=|cosx|的最小正周期为π.规律方法1.正弦函数、余弦函数的周期性,实质上是由终边相同角所具有的周期性决定的.2.对于形如y=Asin(ωx+φ),y=Acos(ωx+φ)(A,ω,φ为常数,且ω≠0)函数的周期求法常直接利用T=eq\f(2π,|ω|)来求解;形如y=|Asinωx|或y=|Acosωx|的周期常结合函数的图象,观察求解.互动探究若把例题中两个函数改为:(1)y=eq\f(1,3)cos(2x-eq\f(π,3));(2)y=cos|x|,试求函数的最小正周期.【解】(1)∵y=eq\f(1,3)cos(2x-eq\f(π,3))中,ω=2,∴函数的最小正周期为T=eq\f(2π,2)=π.(2)∵y=cos|x|=cosx,∴y=cos|x|的最小正周期T=2π.类型2三角函数的奇偶性的判断例2判断下列函数的奇偶性:(1)f(x)=eq\r(2)sin2x;(2)f(x)=sin(eq\f(3x,4)+eq\f(3π,2));(3)f(x)=eq\r(1-cosx)+eq\r(cosx-1).【思路探究】首先求出函数定义域,在定义域关于原点对称的前提下,根据f(-x)与f(x)及-f(x)的关系来判断.【自主解答】(1)显然x∈R,f(-x)=eq\r(2)sin(-2x)=-eq\r(2)sin2x=-f(x),∴f(x)是奇函数.(2)∵x∈R,f(x)=sin(eq\f(3x,4)+eq\f(3π,2))=-coseq\f(3x,4),∴f(-x)=-coseq\f(3-x,4)=-coseq\f(3x,4)=f(x),∴函数f(x)=sin(eq\f(3x,4)+eq\f(3π,2))是偶函数.(3)由eq\b\lc\{\rc\(\a\vs4\al\co1(1-cosx≥0,cosx-1≥0)),得cosx=1,∴x=2kπ(k∈Z),此时f(x)=0,故该函数既是奇函数又是偶函数.规律方法1.判断函数奇偶性要按函数奇偶性的定义,定义域关于原点对称是函数是奇函数或偶函数的前提.2.要注意诱导公式在判断f(x)与f(-x)之间关系时的作用.变式训练判断下列函数的奇偶性:(1)f(x)=eq\r(2)sin(2x+eq\f(5,2)π);(2)f(x)=lg(sinx+eq\r(1+sin2x)).【解】(1)函数的定义域为R,f(x)=eq\r(2)sin(2x+eq\f(5,2)π)=eq\r(2)sin(2x+eq\f(π,2))=eq\r(2)cos2x,显然有f(-x)=f(x)成立.∴f(x)=eq\r(2)sin(2x+eq\f(5,2)π)为偶函数.(2)函数定义域为R,f(-x)=lg(-sinx+eq\r(1+sin2x))=lgeq\f(1,sinx+\r(1+sin2x))=-lg(sinx+eq\r(1+sin2x))=-f(x).∴函数f(x)=lg(sinx+eq\r(1+sin2x))为奇函数.类型3求正、余弦函数的单调区间例3求函数y=sin(eq\f(π,6)-x)的单调递减区间.【思路探究】本题中自变量的系数为负,故首先利用诱导公式,将y=sin(eq\f(π,6)-x)化为y=-sin(x-eq\f(π,6))形式,故只需求y=sin(x-eq\f(π,6))的单调递增区间即可.【自主解答】y=sin(eq\f(π,6)-x)=-sin(x-eq\f(π,6)),令z=x-eq\f(π,6),则y=-sinz,要求y=-sinz的递减区间,只需求sinz的递增区间,即2kπ-eq\f(π,2)≤z≤2kπ+eq\f(π,2),k∈Z,∴2kπ-eq\f(π,2)≤x-eq\f(π,6)≤2kπ+eq\f(π,2),k∈Z.∴2kπ-eq\f(π,3)≤x≤2kπ+eq\f(2,3)π,k∈Z.故函数y=sin(eq\f(π,6)-x)的单调递减区间为[2kπ-eq\f(π,3),2kπ+eq\f(2,3)π],k∈Z.规律方法1.求形如y=Asin(ωx+φ)+b或形如y=Acos(ωx+φ)+b(其中A≠0,w>0,b为常数)的函数的单调区间,可以借助于正弦函数、余弦函数的单调区间,通过解不等式求得.2.具体求解时注意两点:①要把ωx+φ看作一个整体,若ω<0,先用诱导公式将式子变形,将x的系数化为正;②在A>0,ω>0时,将“ωx+φ”代入正弦(或余弦)函数的单调区间,可以解得与之单调性一致的单调区间;当A<0,ω>0时同样方法可以求得与正弦(余弦)函数单调性相反的单调区间.变式训练求函数y=2cos(eq\f(π,4)-x)的单调递增区间.【解】y=2cos(eq\f(π,4)-x)=2cos(x-eq\f(π,4)),由2kπ-π≤x-eq\f(π,4)≤2kπ(k∈Z)得2kπ-eq\f(3,4)π≤x≤2kπ+eq\f(π,4)(k∈Z).∴y=2cos(eq\f(π,4)-x)的单调递增区间为[2kπ-eq\f(3,4)π,2kπ+eq\f(π,4)](k∈Z).类型4有关三角函数的最值问题例4已知函数y1=a-bcosx的最大值是eq\f(3,2),最小值是-eq\f(1,2),求函数y=-4asin3bx的最大值.【思路探究】欲求函数y的最大值,须先求出a,为此可利用函数y1的最大、最小值,结合分类讨论求解.【自主解答】∵函数y1的最大值是eq\f(3,2),最小值是-eq\f(1,2).当b>0时,由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(a+b=\f(3,2),,a-b=-\f(1,2),))∴eq\b\lc\{\rc\(\a\vs4\al\co1(a=\f(1,2),,b=1.))当b<0时,由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(a-b=\f(3,2),a+b=-\f(1,2))),∴eq\b\lc\{\rc\(\a\vs4\al\co1(a=\f(1,2),b=-1)).因此y=-2sin3x或y=2sin3x.函数的最大值均为2.规律方法1.对于求形如y=asinx+b或y=acosx+b的函数值域问题,一般情况下只要注意到正、余弦函数的性质“有界性”即可解决.注意当x有具体范围限制时,需考虑sinx或cosx的范围.2.求解此类问题时,要先求三角函数值的范围,然后再根据其系数的正负性质求解.变式训练求函数y=3-2cosx,x∈[-eq\f(π,4),eq\f(π,4)]的值域.【解】(1)∵-eq\f(π,4)≤x≤eq\f(π,4),∴eq\f(\r(2),2)≤cosx≤1,∴-1≤-cosx≤-eq\f(\r(2),2),∴-2≤-2cosx≤-eq\r(2),∴1≤3-2cosx≤3-eq\r(2).故函数y=3-2cosx,x∈[-eq\f(π,4),eq\f(π,4)]的值域为[1,3-eq\r(2)].易错易误辨析忽略弦函数值域的有界性致误典例求函数y=1-2cos2x+5sinx的最大值和最小值.【错解】y=1-2cos2x+5sinx=2sin2x+5sinx-1=2(sinx+eq\f(5,4))2-eq\f(33,8)≥-eq\f(33,8),∴函数y=1-2cos2x+5sinx的最小值为-eq\f(33,8),没有最大值.【错因分析】根据正弦函数的图象,可以发现sinx的值介于[-1,1]之间,上述解答错误地将sinx的范围当成了实数集R,所以本题中的以sinx为自变量的二次函数的定义域不是R,而是[-1,1].【防范措施】定义域是函数的三要素之一,研究函数的性质一般要先考虑函数的定义域,三角函数也不例外,若忽略定义域这一细节,可能扩大自变量的取值范围而导致错误.【正解】y=1-2cos2x+5sinx=2sin2x+5sinx-1=2(sinx+eq\f(5,4))2-eq\f(33,8).令sinx=t,则t∈[-1,1],则y=2(t+eq\f(5,4))2-eq\f(33,8).因为函数y在[-1,1]上是增函数,所以当t=sinx=-1时,函数取得最小值-4,当t=sinx=1时,函数取得最大值6.课堂小结1.三角函数的最值、单调区间及三角函数值的大小比较等问题,能结合图象时一定要联系图象进行综合思考,将数形有机结合起来.2.讨论对称问题时一定要注意最值点、平衡点及周期的必然联系,形成思维网络.3.讨论三角函数的所有性质,都要在其定义域内进行.当堂双基达标1.下列函数中,最小正周期为π的是()A.y=sinxB.y=cosxC.y=sineq\f(x,2) D.y=cos2x【解析】由T=eq\f(2π,|ω|)知D中函数的最小正周期为π.【答案】D2.下列函数是奇函数的是()A.y=x2B.y=cosxC.y=sinx D.y=|sinx|【解析】由奇函数定义知y=sinx为奇函数.【答案】C3.函数y=cosx(0≤x≤eq\f(π,3))的值域是()A.[-1,1] B.[eq\f(1,2),1]C.[0,eq\f(1,2)] D.[-1,0]【解析】y=cosx在[0,eq\f(π,3)]上单调递减,∴coseq\f(π,3)≤y≤cos0,即eq\f(1,2)≤y≤1.【答案】B4.求函数y=2sin(eq\f(π,4)-x)在[-π,π]上的减区间.【解】y=2sin(eq\f(π,4)-x)=-2sin(x-eq\f(π,4)).令z=x-eq\f(π,4),只需求y=-2sinz的减区间,即求sinz的增区间.由2kπ-eq\f(π,2)≤x-eq\f(π,4)≤2kπ+eq\f(π,2),k∈Z,∴2kπ-eq\f(π,4)≤x≤2kπ+eq\f(3,4)π,k∈Z.又-π≤x≤π,令k=0,则-eq\f(π,4)≤x≤eq\f(3,4)π,∴所求函数在[-π,π]上的减区间是[-eq\f(π,4),eq\f(3,4)π].课后知能检测一、选择题1.正弦函数y=sinx,x∈R的图象的一条对称轴是()A.y轴B.x轴C.直线x=eq\f(π,2)D.直线x=π【解析】当x=eq\f(π,2)时,y取最大值,∴x=eq\f(π,2)是一条对称轴.【答案】C2.函数y=sin(2x+φ)(0≤φ≤π)是R上的偶函数,则φ的值是()A.0B.eq\f(π,4)C.eq\f(π,2)D.π【解析】当φ=eq\f(π,2)时,y=sin(2x+eq\f(π,2))=cos2x,而y=cos2x是偶函数,故选C.【答案】C3.函数y=1-2coseq\f(π,2)x的最小值,最大值分别是()A.-1,3B.-1,1C.0,3D.0,1【解析】∵coseq\f(π,2)x∈[-1,1],∴-2coseq\f(π,2)x∈[-2,2],∴y=1-2coseq\f(π,2)x∈[-1,3],∴ymin=-1,ymax=3.【答案】A4.函数f(x)=3sin(x+eq\f(π,6))在下列区间内递减的是()A.[-eq\f(π,2),eq\f(π,2)]B.[-π,0]C.[-eq\f(2,3)π,eq\f(2π,3)]D.[eq\f(π,2),eq\f(2π,3)]【解析】令2kπ+eq\f(π,2)≤x+eq\f(π,6)≤2kπ+eq\f(3π,2),k∈Z可得2kπ+eq\f(π,3)≤x≤2kπ+eq\f(4π,3),k∈Z,∴函数f(x)的递减区间为[2kπ+eq\f(π,3),2kπ+eq\f(4π,3)],k∈Z.【答案】D5.下列关系式中正确的是()A.sin11°<cos10°<sin168°B.sin168°<sin11°<cos10°C.sin11°<sin168°<cos10°D.sin168°<cos10°<sin11°【解析】∵sin168°=sin(180°-12°)=sin12°,cos10°=sin(90°-10°)=sin80°.由正弦函数的单调性得sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.【答案】C二、填空题6.函数y=2cos(eq\f(π,3)-ωx)的最小正周期为4π,则ω=________________________________________________________________________.【解析】∵4π=eq\f(2π,|-ω|),∴ω=±eq\f(1,2).【答案】±eq\f(1,2)7.函数y=sin2x+sinx-1的值域为________.【解析】y=(sinx+eq\f(1,2))2-eq\f(5,4),∵-1≤sinx≤1,∴0≤(sinx+eq\f(1,2))2≤eq\f(9,4).-eq\f(5,4)≤y≤1.【答案】[-eq\f(5,4),1]8.若已知f(x)是奇函数,且当x>0时,f(x)=sin2x+cosx.则x<0时,f(x)=__________.【解析】当x<0时,-x>0,∴f(-x)=sin(-2x)+cos(-x),∴f(-x)=-sin2x+cosx.∵f(x)为奇函数,∴f(-x)=-f(-x),∴f(x)=-[-sin2x+cosx]=sin2x-cosx.【答案】sin2x-cosx三、解答题9.判断下列函数的奇偶性:(1)f(x)=sin(2x+eq\f(3π,2));(2)f(x)=eq\f(sinx1-sinx,1-sinx).【解】(1)函数f(x)的定义域是R,f(x)=sin(2x+eq\f(3π,2))=-cos2x,∴f(-x)=-cos(-2x)=-cos2x=f(x).∴f(x)是偶函数.(2)由题意,知sinx≠1,即f(x)的定义域为{x|x≠2kπ+eq\f(π,2)},k∈Z,此函数的定义域不关于原点对称.∴f(x)是非奇非偶函数.10.求函数y=3sin(eq\f(π,3)-eq\f(x,2))的单调递增区间.【解】y=3sin(eq\f(π,3)-eq\f(x,2))=-3sin(eq\f(x,2)-eq\f(π,3)).由eq\f(π,2)+2kπ≤eq\f(x,2)-eq\f(π,3)≤eq\f(3π,2)+2kπ,k∈Z,解得:eq\f(5π,3)+4kπ≤x≤eq\f(11π,3)+4kπ,k∈Z,∴函数y=3sin(eq\f(π,3)-eq\f(x,2))的单调增区间为[eq\f(5π,3)+4kπ,eq\f(11π,3)+4kπ](k∈Z).11.已知函数f(x)=2asin(2x-eq\f(π,3))+b的定义域为[0,eq\f(π,2)],最大值为1,最小值为-5,求a和b的值.【解】∵0≤x≤eq\f(π,2),∴-eq\f(π,3)≤2x-eq\f(π,3)≤eq\f(2,3)π,∴-eq\f(\r(3),2)≤sin(2x-eq\f(π,3))≤1,易知a≠0.当a>0时,f(x)max=2a+b=1,f(x)min=-eq\r(3)a+b=-5.由eq\b\lc\{\rc\(\a\vs4\al\co1(2a+b=1,-\r(3)a+b=-5)),解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=12-6\r(3),b=-23+12\r(3))).当a<0时,f(x)max=-eq\r(3)a+b=1,f(x)min=2a+b=-5.由eq\b\lc\{\rc\(\a\vs4\al\co1(-\r(3)a+b=1,2a+b=-5)),解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=-12+6\r(3),b=19-12\r(3))).【教师备课资源】1.比较大小比较下列各组值的大小.(1)sineq\f(21π,5)与sineq\f(42,5)π;(2)sin194°与cos160°.【思路探究】(1)首先将角eq\f(21π,5)和eq\f(42π,5)化为[0,2π]内的角,再依据单调性比较大小.(2)先化为同名函数再进行比较.【解】(1)由于sineq\f(21π,5)=sin(4π+eq\f(π,5))=sineq\f(π,5),sineq\f(42π,5)=sin(8π+eq\f(2π,5))=sineq\f(2π,5).又0<eq\f(π,5)<eq\f(2π,5)<eq\f(π,2),而y=sinx在[0,eq\f(π,2)]上单调递增,所以sineq\f(π,5)<sineq\f(2π,5),即sineq\f(21π,5)<sineq\f(42π,5).(2)由于sin194°=sin(180°+14°)=-sin14°,cos160°=cos(180°-20°)=-cos20°=-sin70°,又0°<14°<70°<90°,而y=sinx在[0,eq\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化转型趋势及实施方案
- 锅炉工聘用合同
- 三农行业现代农业园区规划与设计指导书
- 三农村农业综合开发方案
- 2025年东营货运上岗证模拟考试
- 2025年东莞货运资格证安检考试题
- 2025年安顺货运从业资格证模拟考试保过版
- 2025年辽阳货运从业资格模拟考试
- 2025年荆州货运车从业考试题
- 2024年高考化学一轮复习2.2离子反应离子方程式练习含解析
- 2024年临沧永德县人民法院聘用制书记员招聘考试真题
- 2025年春新沪科版物理八年级下册全册教学课件
- 2025年国家广播电视总局监管中心招聘5人高频重点提升(共500题)附带答案详解
- 中医院发展中医重点专科、学科加强中医药人才培养的具体措施
- 2025年中国私域电商行业市场运行态势、市场规模及发展趋势研究报告
- 财务核算管理制度
- 2024年山东省淄博市中考英语试题(含答案)
- 2025年浙江省重点高中提前自主招生数学模拟试卷(含答案)
- 弱电智能化劳务分包合同
- 电网调度基本知识课件
- 主要施工机械设备、劳动力、设备材料投入计划及其保证措施
评论
0/150
提交评论