版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TheFutureof
IntelligenceAnalysis:
U.S.-AustraliaProjectonAIandHuman
MachineTeaming
September2024
Page2
Contents
ExecutiveSummary3
ScopeNote6
Introduction7
TheIntelligenceAnalysisMissionandExpectationsofGenerativeAI9
AIToday:ThinkingAboutApplicationsAcrosstheAnalyticWorkflow14
LookingAhead:TheComingWaveofAIAdvancements22
RecommendedActions27
AppendixA:FactorsThatInfluenceGenerativeAIModelPerformance36
AppendixB:DifferingPerspectivesonAI'sPotential38
Contributors40
Page3
ExecutiveSummary
Rapidadvancesinthedevelopmentofartificialintelligence(AI)technologiessincelate2022,particularlythedeploymentofGenerativeAI(GenAI)chatbotspoweredbylargelanguagemodels(LLMs),havedemonstratedthepotentialforAItorevolutionizehowstatesconductintelligencework.AItechnologiesareverylikelytocontinuetorapidlyadvancegiventhelargeamountofinvestmentfromtheprivatesectorandnationstates,withsomeexpertspredictingwewillseetheadventofartificialgeneralintelligence(AGI)–atypeofAIthatachieves,orsurpasses,human-levelcapacityforlearning,perception,andcognitiveflexibility–bytheendofthisdecade.1Evenifthisambitiousgoalisnotfullymet,theLLMsavailablewithinthenextthreeyearswillprobablyfarsurpassthecapabilitiesofsystemsweusetodayandwillbeabletosolvecomplexproblems,takeactiontocollectandsortdata,anddeliverwell-reasonedassessmentsatscaleandatspeed.
●TheeffectsofAIlikelywillbefeltatalllevelsoftheintelligenceenterprise,includingincollection,butthearenathatweassesswillseetheearliestimpactwillbeontheall-sourceanalyticmissionbecauseofAI’sabilitytoquicklyprocesslargevolumesofdataandGenAI’sabilitytoproducemeaningfulinsightsfromthem.
IntelligenceagenciesthatareabletoeffectivelyandsafelyincorporateGenAIintotheirworkflowscouldrealizesubstantialgainsinthebreadthanddepthoftheiranalyticworkandsignificantlyspeedupthedeliverytimeofcriticalinsightstodecision-makers.Ifintegratedintoandadaptedforintelligenceanalyticwork,currentlyavailableGenAItoolswouldspeedupandenhanceseveralstagesoftheanalyticworkflow,fromthesearchforanddiscoveryofnewdata,toconceptualizinganalyticproducts,toapplyinganalytictradecraftandconductingclassificationchecks.
●Futuresystemswillbeevenmorecapableandwillbeabletoshouldermoreoftheanalyticworkload;firstbyautonomouslytakingcareofroutinetasks,suchasforeignlanguagetranslation,databasing,anddatavisualizationandeventuallybymoredirectlyapplyingintelligenceanalysistradecrafttoanswerpolicymakerquestionsandprovideunique,value-addedinsights.
●WhileU.S.andAustralianIntelligenceCommunities(ICs)arewell-acquaintedwithAIandhavebeentrackingitsdevelopmentforyears,theyaretakingacautiousapproachtodeployments.Theirhesitancyisrootedinconcerns–well-foundedatpresent–over
1TimMucci&ColeStryker,
GettingReadyforArtificialGeneralIntelligence,
IBM(2024).
Page4
someofthetechnicallimitationsofexistingGenAIsystemsandthelackofclearlegalandpolicyguidanceabouthowthesesystemsshouldbeusedfornationalsecuritypurposes.Thereisalsoskepticismaboutthevalueaddedofthistechnologyoverhighly-trainedhumananalystswithdeepsubjectmatterexpertise.Thishasledanalyticmanagerstoban,orseverelylimit,theuseofGenAI,andconstraineddeploymentsofGenAItoolstonarrowuses,suchasdocumentsummarization,thatarewellwithinthecapabilitiesofcurrentLLMsbutwilllagfarbehindwhatfuturesystemswillbeabletoprovide.
●TheirhesitancyalsoreflectsaviewamonganalyticpractitionersthatAIis“justanothersoftwaretool”thatanalystswillneedtolearnhowtouseandthatexistingapproachestotechnologyadoptionaresufficient.Itisourassessment,however,thatfutureAIcapabilitieswillbesopowerfulthattheywilltransformthebusinessofintelligenceanalysis,andthattheICsneedtoactwithgreaterurgencynowtopreparefortheirarrivalandeffectivedeployment,especiallyinanticipationofadversariessuccessfullyleveragingthepowerofthesetools.
AustralianandU.S.leadersshouldbeginlayingthegroundworknowfortheGenAIfuturethatliesjustaroundthecorner.ToavoidremainingperpetuallybehindthecurveonthepaceofAItechnologicaldevelopment,analyticmanagersshouldshifttheirfocusawayfromwhatGenAIcandotodayandinsteadmakereasonedbetsonwhatGenAIwillbeabletodeliverwithinthenext3-5years.InadditiontopressingtheirhomeagenciestoacquireandintegrateAI-relatedinfrastructure(particularlyadvancedcomputecapabilities,accesstocutting-edgecommercially-availableGenAImodelsandalgorithms,andsecuredatastorage),wemakethefollowingrecommendationsforU.S.andAustraliananalyticmanagers:
1.DesignforContinuousAIModelImprovements.WiththeexpectedexponentialgrowthofLLMs,theICscannotonlylookonlytothecurrenttechnologicalstate-of-playbutmustalsoanticipateGenAI’sfuturetrajectoryoverthecourseofthenextfive,ten,ortwentyyears.Theymustbalancequicklyandsafelydeployingthesetoolswhilealsoclearlyensuringtheproperintegrationoftheexpertiseandskillsofhumananalysts.ThiswillincludeaccountingforlargerLLMs,expansionsincontextlengths,andfurtherdevelopmentsinmoresophisticatedsystemslikecompoundandagenticsystems.
2.InsistonAutomatingPortionsoftheAnalyticWorkflow.ManagersshouldfullydeconstructallofthekeyelementsoftheanalyticprocesswithaneyetowardusingAIcapabilitiestoshrinktheamountoftimerequiredtodeliverinsighttopolicymakerswhilemaintainingstringentstandardsforquality,accuracy,andanalytictradecraft.Elementsthatcurrentlyhaveaheavyamountofhumanredundancy,suchastheanalyticreviewprocess,probablycouldseesomeefficiencies.
3.BuildHuman-MachineAnalyticTeams.AnticipatingthegrowingpowerofAIsystems,ICleadersshouldstandupanalyticteamsthatpurposefullyblendtherelativestrengthsof
Page5
humansandmachines.Thiswillrequireestablishingtheexpectationsandrules-of-the-roadforwhathumansareresponsiblefor,alongwithcreatingnewtradecraftstandards.
4.CreateAI-ReadyTrainingandIncentiveStructuresfortheAnalyticWorkforce.Toeffectivelyintegratethesesystemswillrequireaworkforcethatispreparedandadeptatexploitingthesetoolstotheirfullestpotential.TheICswillneedtoinvestindigitalacumen,boththroughtherecruitmentofhighly-trainedtalentandupskillingtheexistingworkforce.
ThereareopportunitiesforU.S.andAustralianICleaderstocollaborateonthedevelopmentandresponsibledeploymentofAIsforintelligenceanalysis.PotentialareasforcooperationincludearticulatingethicalandanalyticstandardsfortheuseofAIsystems,exchangingfindingsfromAItestingandevaluationprograms,sharingbestpracticesinthemanagementofhuman-machineteams,andpilotingtheuseofAItotacklediscreteintelligenceanalysisproblemsonasharedhigh-sidedatacloud.
Page6
ScopeNote
ConductedthroughacollaborationbetweentheSpecialCompetitiveStudiesProject(SCSP)andtheAustralianStrategicPolicyInstitute(ASPI),thisprojectseekstoilluminateAI'spotentialtoenhanceall-sourceintelligenceanalysis.WeengagedexpertsfromthenationalsecurityandemergingtechnologysectorsthroughaseriesofworkshopsheldsimultaneouslyinCanberraandWashington.Acompletelistofcontributorscanbefoundattheendofthereport.
Theinauguralworkshop,heldinlateNovember2023,assessedcurrentAIapplications,privatesectoradvancementsindicativeoffuturepotential,andadoptionchallenges.Thesecondworkshop,heldinFebruary2024,developedaseriesofrecommendationsforaligningcutting-edgegenerativeAIwithanalysisneedsandsupportingthebroaderorganizationaltransformationneededtoharnessthepotentialofAImodelsforall-sourceanalysis.Theoutcomesoftheseworkshops,supplementedbyareviewofrelevantliteratureandexpertconsultations,formthefoundationofthiscomprehensivereport,whichpresentsspecificrecommendationsforstrategicallyimplementingAIintheintelligenceoperationsofbothcountries,targetingnear-term,impactfulapplications.
Page7
Introduction
Therapidevolutionofartificialintelligence(AI),transitioningfromspeculativefictiontotangiblereality,isunderscoredbyadvancementsinmachinelearning(ML)andnaturallanguageprocessing(NLP)aswellasthemeteoricriseoftoolslikeGeminiandChatGPT,whichboastmorethan100millionusers.2AI-poweredmachinesalreadyexcelatgames,medicaldiagnoses,andstandardizedtests,andspecializedAImodelsnowperformtasksindomainslikefinance,science,marketing,datamanagement,research,gamedevelopment,andhealthcare.3
OpenAI’sreleaseofChatGPTinNovember2022–andsubsequentreleasesfromnotonlyOpenAIitself(thefourthversion,ChatGPT-4o,wasreleasedinMay2024),Google(Bard,March2023,andGemini,December2023)andAnthropic(Claude,March2023)–heraldedanewgenerationofartificialintelligencethatofferedunprecedentedopportunitiesforuserstoqueryandinteractwithoverwhelmingvolumesofinformation.TheseLLM-basedgenerativeAImodelshaveavarietyofuses,mostnotablyusingalgorithmstocreatenovelresponsestouserquestionsbydrawingonthepatternsofwordsdetectedinthemassiveamountsofdataonwhichtheyhavebeentrained.LLMsarelikelymostfamiliartoreaders,buttheyarenottheonlytypeof(orapproachto)generativeAIcurrentlyavailable.4Forthisreport,however,wefocusonLLM-poweredgenerativeAI.
2AishaMalik,
OpenAI’sChatGPTNowHas100MillionWeeklyActiveUsers,
TechCrunch(2023).
3DavidSilver,etal.
,MasteringtheGameofGoWithoutHumanKnowledge,
Nature(2017);
MachineLearning’s
PotentialtoImproveMedicalDiagnosis,
U.S.GovernmentAccountabilityOffice(2022);DemisHassabis,
AlphaFold
RevealstheStructureoftheProteinUniverse,
DeepMind(2022);
IntroducingBloombergGPT,
BloombergProfessionalServices(2023);RossTaylor,et.al.
,Galactica,
Meta(2023);DaniilA.Boiko,etal.
,EmergentAutonomousScientific
ResearchCapabilitiesofLargeLanguageModels,
ArXiv(2023);
Copy.ai
(lastaccessed2024);DataEngine,
ScaleAI
(lastaccessed2024);
Elicit,
Ought(lastaccessed2024);
Scenario
(lastaccessed2024);A.J.Ghergich,
How
AutomationIsTransformingHealthcareJobs,
Forbes(2021);and
AwesomeGenerativeAI,
Github(lastaccessed
2024).
4Retrieval-AugmentedAI,forexample,usestraditionalsearchmethodologiestoidentifythedocumentsthatare
mostrelevanttotheusers’queries,effectivelyimprovingthequalityoftheresponsewhilesimultaneouslyloweringtheprobabilityoftheAIincorrectlyinferringananswerbasedonthestatisticalpatternsthatexistintheunderlyingdata.TheconceptofRAGAIwasintroducedinPatrickLewis,etal.
,Retrieval-AugmentedGenerationforKnowledge
IntensiveTasks,
arXiv(2021).AndrewNghasadvocatedfor“data-centricAI,”whichfocusesonoptimizingthedata
andmetadatatosupportmoresophisticatedAI.See
Data-CentricAIResourceHub
(lastaccessed2024).
Page8
WhatWeMeanby“ArtificialIntelligence”
ThispaperexploresthepotentialofGenerativeAI(GenAI)poweredbylargelanguagemodels(LLMs)forintelligencetasksinvolvingunstructureddata.Whileoftenusedinterchangeably,ML,DeepLearning(DL),andGenAIaredistinctAIsubfieldswithuniquecapabilitiesandchallenges.MLusesalgorithmstointerpretdataandmakepredictions,formingAI'sfoundationallayer.DL,asubsetofML,utilizescomplexneuralnetworksfortaskslikeimagerecognitionandnaturallanguageprocessing,handlingvastvolumesofstructuredandunstructureddata.GenAI,includingtechnologiessuchasGenerativeAdversarialNetworks(GANs)andVariationalAutoencoders(VAEs),representsthemostadvancedsubset.GenAIfocusesoncreatingrealisticnewcontentliketextandimagesfromunstructureddatatypes,requiringthemostsophisticatedhardwarelikegraphicsprocessingunits(GPUs)andtensorprocessingunits(TPUs).
GraphicSource.5
ImagineanintelligenceanalystwhoemploysGenAItohelpforecastRussia'snextmovesinUkraineortounearthillicitChinesefundinginTaiwanesemedia,uncoveringanemerginginfluencenetworkbeforeTaiwan'selections.Sheisnolongeroverwhelmedbydata;instead,sheemploysmultipleAI-poweredtoolstoefficientlyextractcrucialinsightswiththecomputationalmightatherdisposal.However,thisanalystwouldnotrelysolelyonAI;sheknowsthatshewillneedtocommunicateandthuscontextualizethoseinsights.Shewouldcriticallyassessits
sStuartRussell&PeterNorvig
,ArtificialIntelligence:AModernApproach,
PearsonEducationPressat17-26(2021);JeffreyA.Dean,
AGoldenDecadeofDeepLearning:ComputingSystems&Applications,
Daedalus(2022).
Page9
predictions,injectherowntacitknowledge,commonsense,andmoralcompasstosteerAIpastitsinevitablequirksandmakenuanceddecisionstoadapttosurprises,andmanagesensitivescenariosornon-routinesituationswhereAImayotherwisefallshort.6Thisvisionepitomizesthepromiseof“augmentedintelligence”–seamlesslycombininghumanknowledgeandcreativitywithmachinescaleandprecisiontocreateasystemgreaterthanthesumofitsparts.7
FortheU.S.andAustralianICs,wearguethattheAIavenue
Thepromiseof“augmentedintelligence” –seamlesslycombining humanknowledgeand creativitywithmachine scaleandprecisionto createasystemgreaterthanthesumofitsparts.
withthehighestpotentialimpactishuman-machineteaming(HMT),whichcouldrevolutionizetheefficiency,scale,depth,andspeedatwhichanalyticinsightsaregenerated.AI-HMTpromisestoelevateanalyticalcapabilitiesbycreatingfeedbackloopsthatallowanalystsandalgorithmstobenefitfromthestrengthsoftheother.Inthenationalintelligencefield,pilotprojectsdeployAIforbespokeanalyticalfunctions,experiments,andotherdiscretetasks,thoughnotyetatscaleorintegratedacrossthefullanalyticworkflow.8
Withcontinuingbreakthroughs,theintegrationofexpansiveAIcapabilitiesintothebroadercraftofintelligenceanalysisseemsimminent,butintegratingthesetoolsintointelligenceoperationspresentsauniquesetofchallenges.Inahighstakesenvironment,intelligenceservices,likethoseintheUnitedStatesandAustralia,mustmaintainaveryhighbarforthequalityandaccuracyoftheassessmentstheyproduce;therefore,theyhavelowtolerancefornewtools,inaccurateinformation,orrecommendationsthatconflictwithlegalorethicalguidelines.Inaddition,itisimportantthattherebesomelevelofcooperationandcoordinationbetweenfriendlyintelligenceserviceswhenitcomestothedeploymentandintegrationofAItools.Iffriendlyservicesdeploythesetoolsatdifferentspeedsorevendeploydifferenttypesoftools,itmaycomplicatefuturecollaboration.
6AjayAgrawal,etal.
,PredictionMachines:TheSimpleEconomicsofArtificialIntelligence,
HarvardBusinessReviewPressat53–54,65–69,102(2018);MichaelPolanyi,
TheTacitDimension,
UniversityofChicagoPressat4(2009);
DavidAutor,
Polanyi’sParadoxandtheShapeofEmploymentGrowth,
NationalBureauofEconomicResearchat8
(2014).
7JamesWilson&PaulR.Daugherty,
CollaborativeIntelligence:HumansandAIAreJoiningForces,
HarvardBusinessReview(2018).
8Examplesinclude:NGA’spartnershipwithImpactObservatorytoproduceAI-generatedmapsatalmostreal-time,NGA’sSourceMaritimeAutomatedProcessingSystem(SMAPS)Program,IARPA’s“REASON”Programtodevelopanintelligenceanalysisassistantplug-in,andtheCIA'sdeploymentofGenAIchatbot.JeanneChircop,
AIRevolutionizes
MappingUpdates,Accuracy,
NationalGeospatialIntelligenceAgency(lastaccessed2024);
NGAPutsMachine
LearningtoWorktoSpeedMission,FurtherResearch,
NationalGeospatialIntelligenceAgency(2022);
REASON:
RapidExplanation,AnalysisandSourcingOnline,
IntelligenceAdvancedResearchProjectsActivity(lastaccessed
2024).
Page10
TheIntelligenceAnalysis
MissionandExpectationsofGenerativeAI
WorkshopparticipantssawopportunitiesfordifferenttypesofAItoaugmentintelligenceanalystsand,insomecases,automateseveralpartsoftheirworkacrosstheanalyticworkflow.ItshouldbenotedthatintelligenceserviceshavealonghistoryofusingAI–intheformofmachinelearningalgorithms–asimportantelementsoftheirenterpriseinformationtechnologystacks.TheyarealsoactivelytestingandexperimentingwiththecurrentgenerationofGenAIandotherAImodels.9
WeexpecttoseeintelligenceservicesfurtherdeployingmoresophisticatedAIsystemsintoproductionoverthenext12to18months–justasweexpecttoseeLLMsgrowandartificialintelligencetobecomemoresophisticatedoverthatsametimeperiod.Giventhatthesetoolsandcapabilitieswillgrowatanexponentialspeed,thereisalwaysariskthatICswillstruggletokeeppace.Therefore,overthemedium-term,intelligencecommunitiesmustdevelopfocused,yetflexible,strategiesfortheirimplementation.
Inthesimplestterms,intelligenceanalysisisintendedtodiscernforeignactors’intentionsandactionsbywarningandinformingpolicymakersofchangesinthegeostrategicenvironmentthatarelikelytoaffecttheirsenseofnationalinterests.Itcanalsocharacterizewhatthosechangesmightmeanoverthenear-,mid-,andlong-term.Thechangescanbeone-offevents(e.g.,abi-ormultilateraldiplomaticsummit,anelection,amilitaryacquisitiondecision)ortrends(e.g.,risingtensionsbetweentwoormorecountries,theimplementationandrefinementofapoliticalagenda,amilitarycampaign).Contextualizingtheevent,trend,anditsprobableeffectsinlightofavailableinformationisacriticalsubtextofanalyticmissions.
Inordertoprovidetheseinsights,intelligenceanalystsworkthroughacyclicalprocess–theanalyticworkflow–wherenewinformationissynthesizedandintegratedintoanalyticproductsforcustomers,whointurnprovidefeedbackthatguideswhatnewinformationandinsightsare
9FrankKonkel,
TheUSIntelligenceCommunityisEmbracingGenerativeAI,
GovernmentExecutive(2024);Brandi
Vincent,
CIAtoInvestigateHowGenerativeAI(likeChatGPT)CanAssistIntelligenceAgencies,
DefenseScoop(2023);PeterMartin&KatrinaManson,
CIABuildsItsOwnArtificialIntelligenceToolinRivalryWithChina,
Bloomberg(2023).
Page11
required.Artificialintelligencehasthepotentialtoautomatemanypartsofthisworkflow.Whileanalystsareoftenthekeydriverpushingthrougheachstageofthecycle,thereareotherrelevantstakeholders.Analystsmustliaisewithdatacollectors,includingthoseresponsibleforopen-sourceandclandestinelyacquiredinformation.Similarly,disseminatinganalysestocustomersandconsumersoccursthrougharangeofsystemsandpeople,fromasecurewebsitethroughtoabrieferassignedtosupportaseniordecision-makerforasustainedperiodoftime.Asaresult,introducingLLMsinto
theanalyticworkflowcouldhavespillovereffectsintothelargerintelligenceandpolicymakingapparatuses,especiallyifvariousstakeholdershavetocoordinatetheiruseoftechnologyinordertoupholdtheserelationships.
CoreRequirements:Transparency,Explainability,andAccountability
Inatypicalanalyticproduct,acentralargumentisbolsteredbyasmallnumberofstrongpiecesofevidence.Underthecurrentsystem,humananalystsarelargelyresponsibleformanually
TheabilityofLLMstoholdmoredata,andchangetheweightofthatdata,meansthatananalystwhoisteamedwithanAIwillbeabletodraweffortlesslyonthemostrecent,relevant,and
reputablesupportinginformation.
collatingandweighingevidence,whichincreasesthelikelihoodthatakeypieceofevidence,eitheronethataddsimportantnuanceorstandsinconflicttothecentralargument,willbemissed.TheabilityofLLMstoholdmoredata,andchangetheweightofthatdata,meansthatananalystwhoisteamedwithanAIwillbeabletodraweffortlesslyonthemostrecent,relevant,andreputablesupportinginformation.
Page12
LimitationsofExistingAIModelsforAnalysis
GenAImodelsareconstantlygaininginsophistication,witheachiterationofamodelmakingcrucialimprovementsoverpreviousversions.Atthesametime,eachiterationalsocreatesnewvulnerabilitiesaboutwhichintelligenceprofessionalsmustbeaware.Giventhevariouscomponentsthatgointothesemodels,theywillalwayshavetheirinherentlimitations,whichnotonlynecessitatehumanoversightbutalsotechnicalsafeguards.
•EarlyLLMsstruggledwithfactualgrounding.Asstatisticalmodelsfocusonsequencepredictionsratherthanfactualaccuracy,somecurrentLLMscangenerateseeminglyplausiblebutwhollyinventedstatementsungroundedinreality.Thistendencyto“hallucinate”stemsfromfactorslikemisunderstandingcontent,limitedtrainingdata,over-relianceonstatisticallikelihoodsratherthanverifiedevidencesources,andalackofmechanismstoconfirmaccuracy.Forintelligenceanalysts,hallucinationscouldcriticallymisguidehigh-impactassessmentsifnotcaught.Developersareworkingonmitigationtechniquesincludingpromptfine-tuningandalgorithmsthatalertuserstopossiblehallucinations.10
•LLMshavelimitedreasoningcapacities.Despiteadvancesinnaturallanguageprocessing,mostlargelanguagemodelsstillstrugglewithcomplexcausalanalysis,logicaldeduction,analogicalmappingbetweenscenarios,ormathematicallymodelingkeyrelationshipsunderlyingevents,evenwiththebestdataavailable.Whenpolicymakersturntointelligenceanalystsforassessments,itisvitalthatanalystsexplainhowtheydrewtheirconclusions.Hybridapproachesthatcombinestatisticallearningwithcompositionalreasoning,causaldiagrams,andotherframeworkscouldbetterelicitexplanatoryrationaleswithinAIsystems.
•LLMsriskpre-existingbiasamplification.Foranalysistobeofhighquality,itmustbegroundedinanappropriateregionalandgenerationalcontext.Largelanguagemodelstrainedonlimitedsocietaltextsmayindirectlypropagateandevenamplifyhistoricalbiases.Forall-sourceintelligenceapplication,backwardstransmissionofdisproportionaterepresentationsortoxicassociationsaroundfactorslikerace,gender,ethnicityandculturecouldcorrodesocialequitystandardsvitaltopublicserviceintegrity.Establishingproactivealgorithmauditingprocessesforfairness,inclusionandvaluealignmenttailoredtotheuniquedatainteroperabilityandpolicynotificationneedsofintelligencecommunitieswillhelpavoidmarginalization.
10ImamaShezad,
BeyondTraditionalFine-Tuning:ExploringAdvancedTechniquestoMitigateLLMHallucinations,
HuggingFace(2024);SebastianFarquharetal.
,DetectingHallucinationsinLargeLanguageModelsUsingSemantic
Entropy,
Nature(2024).
Page13
However,onekeychallengethatcomeswithdeployingLLMsinintelligenceanalysisistheopaquenessthatcomeswithLLMoutputs.LLMsintrinsicallyfunctionas“blackboxes,”obscuringsomeofthedetailedreasoningthathasledtothemodel'soutput,whichposesaproblemforanalystsandpolicymakersalike.RobustaccountabilityandmaintainingpolicymakerandpublictrustareofutmostimportancewithintheUnitedStatesandAustralianintelligenceservices,giventheiruniqueresponsibilitiesandaccesstosensitiveinformation.Ifpolicymakerscannotunderstandhowandwhycertainevidencewasused,theanalysislosescredibility.11
Therefore,theICsmustensurethatbasicstandardsfortransparencyandexplainabilityaredesignedinconjunctionwiththedeploymentofLLMs.FortheU.S.IC,thesestandardsmustadheretoODNIrequirements,suchasICD203(“AnalyticStandards”)andICD206(“SourcingRequirementsforDisseminatedAnalyticProducts”).12ThetwoICDsmandatedetailedsourcesandanalystconfidenceinthosesources.
ExplainableAI(XAI)isonetoolthatcouldensurethatLLMoutputsmeetthesestandards.XAIhelpsinthegenerationofinsightsthatarejustifiable,trustworthy,andfostertrustinAI’suseinintelligence.XAIaimstodemystifyAIdecisionsbyprovidingtwolevelsofexplanation:globalexplanationsthatdescribethesystem'soverallworkings,andlocalexplanationsthatdetailtherationalebehindspecificdecisions.Severalresearchinitiatives,suchasIARPA'sREASON,BENGAL,BETTER,andHIATUSprograms,aswellasDARPA'sXAIprogram,havebeenlaunchedtohelpdevelopandimplementXAIintheintelligencedomain.13Theyseektodevelopnoveltechnologiesthatenableintelligenceanalyststoimproveevidenceandreasoninginanalyticreports,identifyandmitigatebiasingenerativeAIsystems,improvetheaccuracyandexplainabilityofinformationextractedfromunstructuredtextdata,anddevelopexplainablemodelsforattributingauthorshiptoanonymousorpseudonymoustextdata.
Intheabsenceoffu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延安大学《文学理论(一)》2022-2023学年第一学期期末试卷
- 烟台理工学院《微机原理与接口技术》2023-2024学年第一学期期末试卷
- 烟台理工学院《动态网页设计与网站建设》2022-2023学年第一学期期末试卷
- 许昌学院《计算机应用基础》2021-2022学年第一学期期末试卷
- 徐州工程学院《舞蹈(Ⅱ)》2022-2023学年第一学期期末试卷
- 石材雕刻工程合同三篇
- 徐州工程学院《服装专业英语》2022-2023学年第一学期期末试卷
- 信阳师范大学《心理学实验操作》2023-2024学年第一学期期末试卷
- 信阳师范大学《素描全身像写生》2023-2024学年第一学期期末试卷
- 课外拓展项目开发计划
- 高二班会 完整版课件PPT
- 金蝶K3 WISE平台介绍
- 部编人教版八年级上册初中历史 第20课 正面战场的抗战 同步练习(作业设计)
- 高考英语语法填空专项6篇(附解析)
- 养殖场租赁合同协议书范本4篇
- 政府会计练习题集题库及答案
- 抗菌药物的分类及抗菌特点理解
- 实验一 伐倒木材积测定
- 7.《大雁归来》课件(共20张PPT)
- 标准茶园建设与高效栽培技术PPT通用课件
- 土方场地移交单范本
评论
0/150
提交评论