版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)九年级数学基础计算专题一.解答题(共30小题)1.求值:|﹣2|+20090﹣(﹣)﹣1+3tan30°.计算:﹣22+(tan60°﹣1)×+(﹣)﹣2+(﹣π)0﹣|2﹣|计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.(1)计算:2cos60°﹣(2009﹣π)0+;(2)解方程:.5.(1)︳﹣3|﹣2cos30°﹣﹣2﹣2+(3﹣π)0(2)先化简,再求值.,其中x=36.(1)(﹣2010)0+﹣2sin60°.(2)已知x2﹣2x=1,求(x﹣1)(3x+1)﹣(x+1)2的值.计算:(2+)(2﹣)2+()0+﹣2(cos30°+sin30°)+(0.5)﹣1.8.(1)计算:(﹣2010)0+(sin60°)﹣1﹣|tan30°﹣|+;(2)先化简:,若结果等于,求出相应x的值.9.(1)计算:cos60°+|1﹣|﹣(2﹣tan30°)+()﹣1;(2)先化简,再求值:(其中a=3,b=).分解因式:m2﹣n2+2m﹣2n11.分解因式:x3﹣2x2y+xy2.分题因式:a2+2ab+b2﹣c2.化简:(﹣)÷.14.化简:﹣÷15.计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷化简:(﹣)÷.(1)计算:﹣sin60°+|2﹣|+(2)解分式方程:+2=解方程:.19.解方程:+=1.解方程:.21.解分式方程:+=﹣1.解不等式组:23.解不等式组:24.解不等式组:,并把解集在数轴上表示出来.解不等式组:.26.解方程:(x﹣3)(x﹣1)=3.解方程:x(2x+1)=8x﹣3.28.用配方法解方程:2x2﹣x﹣1=0.29.解方程:3x2﹣2x﹣2=0.30.解方程:(x+2)(x+3)=1.
九年级数学基础计算专题参考答案与试题解析一.解答题(共30小题)1.求值:|﹣2|+20090﹣(﹣)﹣1+3tan30°.【解答】解:原式=2﹣+1+3+3•=6.2.计算:﹣22+(tan60°﹣1)×+(﹣)﹣2+(﹣π)0﹣|2﹣|【解答】解:原式=﹣4+(﹣1)+4+1﹣2+=﹣4+3﹣+3+=2.3.计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.【解答】解:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2=(3分)=(5分)=8.(6分)4.(1)计算:2cos60°﹣(2009﹣π)0+;(2)解方程:.【解答】解:(1)原式=2×﹣1+3=3.(2)去分母得:2﹣x+3(x﹣3)=﹣2,化简得2x=5,解得x=.经检验,x=是原方程的根.∴原方程的根是x=.5.(1)︳﹣3|﹣2cos30°﹣﹣2﹣2+(3﹣π)0(2)先化简,再求值.,其中x=3【解答】(1)解:原式=3﹣﹣2﹣+1(3分)=;(5分)(2)解:=(1分)=(3分)=.(4分)当x=3时,原式=1.(5分)6.(1)(﹣2010)0+﹣2sin60°.(2)已知x2﹣2x=1,求(x﹣1)(3x+1)﹣(x+1)2的值.【解答】(1)解:原式=1+﹣1﹣2×=0.(2)解:原式=3x2+x﹣3x﹣1﹣x2﹣2x﹣1=2x2﹣4x﹣2.当x2﹣2x=1时,原式=2(x2﹣2x)﹣2=2×1﹣2=0.7.计算:(2+)(2﹣)2+()0+﹣2(cos30°+sin30°)+(0.5)﹣1.【解答】解:原式=(2﹣)+1÷2﹣2()+2(3分)=(2+1﹣1+2)+(2﹣﹣2×)(5分)=4.(6)8.(1)计算:(﹣2010)0+(sin60°)﹣1﹣|tan30°﹣|+;(2)先化简:,若结果等于,求出相应x的值.【解答】解:(1)原式=1++2=1++2=1++2=3;(2)原式==;由=,得:x(x﹣3)=2,解得x=.9.(1)计算:cos60°+|1﹣|﹣(2﹣tan30°)+()﹣1;(2)先化简,再求值:(其中a=3,b=).【解答】解:(1)原式===;(2)解:原式====当a=3,b=时,原式=.10.分解因式:m2﹣n2+2m﹣2n【解答】解:m2﹣n2+2m﹣2n,=(m2﹣n2)+(2m﹣2n),=(m+n)(m﹣n)+2(m﹣n),=(m﹣n)(m+n+2).11.分解因式:x3﹣2x2y+xy2.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.12.分题因式:a2+2ab+b2﹣c2.【解答】解:a2+2ab+b2﹣c2=(a+b)2﹣c2=(a+b+c)(a+b﹣c).13.化简:(﹣)÷.【解答】解:原式=[﹣]÷=÷=•=.14.化简:﹣÷【解答】解:原式=﹣•=﹣==.15.计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷【解答】解:(1)原式=x2+4xy+4y2﹣x2+y2=4xy+5y2;(2)原式=•=•=.16.化简:(﹣)÷.【解答】解:(﹣)÷=====.17.(1)计算:﹣sin60°+|2﹣|+(2)解分式方程:+2=【解答】解:(1)原式=×3﹣×+2﹣+=+2﹣=2;(2)去分母得,x﹣1+2(x﹣2)=﹣3,3x﹣5=﹣3,解得x=,检验:把x=代入x﹣2≠0,所以x=是原方程的解.18.解方程:.【解答】解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程的增根,原方程无解.19.解方程:+=1.【解答】解:方程的两边同乘(x﹣1)(x+1),得(x+1)2﹣4=(x﹣1)(x+1),解得x=1.检验:把x=1代入(x﹣1)(x+1)=0.所以原方程的无解.20.解方程:.【解答】解:方程两边乘(x﹣2)(x+2),得x(x+2)﹣8=x﹣2,x2+x﹣6=0,(x+3)(x﹣2)=0,解得x1=﹣3,x2=2.经检验:x1=﹣3是原方程的根,x2=2是增根.∴原方程的根是x=﹣3.21.解分式方程:+=﹣1.【解答】解:去分母得:﹣(x+2)2+16=4﹣x2,去括号得:﹣x2﹣4x﹣4+16=4﹣x2,解得:x=2,经检验x=2是增根,分式方程无解.22.解不等式组:【解答】解:由①,得3x﹣2x<3﹣1.∴x<2.由②,得4x>3x﹣1.∴x>﹣1.∴不等式组的解集为﹣1<x<2.23.解不等式组:【解答】解:,∵解不等式①得:x≤﹣1,解不等式②得:x>﹣7,∴原不等式组的解集为﹣7<x≤﹣1.24.解不等式组:,并把解集在数轴上表示出来.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:25.解不等式组:.【解答】解:,解①得x<2,解②得x≥﹣1,则不等式组的解集是﹣1≤x<2.26.解方程:(x﹣3)(x﹣1)=3.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.27.解方程:x(2x+1)=8x﹣3.【解答】解:去括号,得:2x2+x=8x﹣3,移项,得:2x2+x﹣8x+3=0合并同类项,得:2x2﹣7x+3=0,∴(2x﹣1)(x﹣3)=0,∴2x﹣1=0或x﹣3=0,∴,x2=3.28.用配方法解方程:2x2﹣x﹣1=0.【解答】解:两边都除以2,得.移项,得.配方,得,.∴或.∴x1=1,.29.解方程:3x2﹣2x﹣2=0.【解答】解:=即,∴原方程的解为,30.解方程:(x+2)(x+3)=1.【解答】解:化简得,x2+5x+5=0∴a=1,b=5,c=5∴b2﹣4ac=5>0∴x=∴x1=,x2=.初中怎样提高数学成绩1.课内重视听讲,培养学生的思维能力初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此,重视听法指导,使他们学会听课,是提高学习效率的关键。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲的解题思路有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习、不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。要认真独立完成作业,勤于思考。倡导不懂就问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识体系,使自己的知识系统化。教师讲课要重点突出、层次分明,要注意防止“注入式”、“满堂灌”,一定要掌握最佳讲授时间,使学生听之有效。这样,让学生抓住重、难点,沿着知识的发生发展过程来听课,不仅能提高听课效率,而且能使其由“听会”转变为“会听”。2.适当做题,养成良好的解题习惯要想学好数学,多做题是难免的,但不是搞题海战术,要熟悉掌握各种题型的解题思路。学生课后往往容易急于完成书面作业,忽视了必要的巩固、记忆、复习,以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业练习巩固、深化理解知识的应有作用。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。对于一些易错题,可备有改错本,写出自己的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯,让自己的精力高度集中,使大脑兴奋、思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯越与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中就会充分暴露,故在平时养成良好的解题习惯是非常重要的。3.树立信心增强记忆首先从思想上树立信心。通过一年的学习初二学生都有这样的亲身体会,在学初中的有关基础知识内容时,只要认真听老师讲解,都能听得懂,因为它所用到的小学知识无非就是加、减、乘、除而已,再加上每一节课极少量的新内容、新法则等等,要掌握一般的基础知识并不难。练习中的一步到位的与新知识有关的简单题也并不难做,难的是较复杂一点的、与以前学过的自己又没有掌握好的知识联系在一起的综合一点的题。所谓“数学学习,一步跟不上,则步步跟不上”,就是指的这一类的题。但这并不是说,因为这样,就不要去学新知识,就学不好新知识。完全不是这么回事。即使你以前的知识都没学好,只要你会加、减、乘、除,大部分的新概念、新法则、新知识你仍然能学会,仍然能依据新学的这些知识去解决有关的简单问题。并且从中可以增强自己的自信心:我这节课认真学了,听懂了,会用学到的新知识去解决一些问题了。之所以碰到难一点的题我不会做,那是因为我以前的知识没学好,在某一个地方卡住了,做不下去了,只要我把以前的知识好好补一补,像现在这样把知识一点一滴地学到手,我就不信学习成绩赶不上去。事实是,前几届有好些个学生原本数学成绩很差,到初三了才着急起来,认真地持之以恒地补习旧知识,学习新知识,最后在中考时取得了较理想的成绩。有的从考几分、十几分到中考考出六十几分,有的从二十几、三十分到中考七、八十分。当然,除学生自身的努力外,还与中考题大部分题目比较容易也有一定的关系(虽然中考是选拔性考试,但也要考虑到初中毕竟还是属于九年义务教育阶段,中考面临的是全体学生,必然要照顾到绝大多数同学的实际情况;中考成绩也是体现九年义务教育阶段素质教育成果的一个重要方面,因此中考题里面始终都会有大量基础题。)但再容易的题目也要你能掌握有关知识的最基础的东西才行呀!如果你自暴自弃,每一节课都不认真学,连最简单的题也不会做,我看你到中考时也只有望题兴叹,后悔莫及。有不少学生中考后都有这样的感叹:早知中考数学题这么容易,我平时学习只要稍为认真一点,平时测验能真正拿个三、四十分(不是掺假的),中考拿个七、八十分绝对没问题。4.自学能力的培养是深化学习的必由之路在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。在具体的课堂教学过程中,我们还要注意采用科学的方法对学生进行学习方面学法的指导科学的学法是指导学生进行高效学习的基础,面对初中数学学科的教学,我们更是要注重对学生进行学习方法方面的指导。在近年来的教学中,良好的学习习惯主要包括以下几点。培养学生形成良好的课前预习的习惯,这个习惯的培养要从初一阶段就开始培养。经过小学阶段的学习,很多学生肯定已经掌握了一定的预习方法。在这里,针对初中数学学科的具体特点,我们的教师就要提出具体可行的方案,让学生根据我们的方案进行有效的预习工作。其中,在预习的过程中教材内容是首先要熟悉一遍的,对于教材中出现的公式、定理也要首先自己试着去理解,之后要做一下课后习题。这样一来学生就可以通过预习及时发现自己存在的疑难之处,在教师进行讲解的过程中就可以有针对性地进行重点听讲。预习工作完成之后,我们还要指导学生学会高效率的听课。在预习的过程中学生已经能够掌握最基础的知识了,那么在听课的时候就可以着重对自己不理解的地方进行听讲,对于自己已经掌握了的知识,在教师进行讲解的过程中可以作为复习内容重温。这样也就更加容易促进自己掌握所学知识了。对于实现我们的教学目的也是很有帮助的。指导学生及时进行阶段复习和总结。这里的总结包括课堂小结、单元总结、整本教材内容的综合整理等,目的是使我们的学生在学习的过程中做到举一反三,进而更加牢固地掌握我们教材上出现的知识点。这对于培养学生的良好学习习惯是非常有益的。我们要善于运用合理的方法对学生进行数学解题方面的指导运用教材中所学习的知识点进行解题是我们数学教学活动的最终目的,也是检验学生是否已经牢固掌握我们所学知识的最佳途径。在以往的数学学习中,我们的学生往往在教师的带领下陷入了“题海战”,这也是我们常常会陷入的一个误区,再多的题也无法让学生真正地理解和掌握所学知识点。我
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于小班的学期教学计划
- 于海河学习计划
- 2024-2024年度五年级下学期教学计划
- 七年级上学期工作计划生物文档
- 电话销售的工作计划
- 幼儿园小班个人工作计划范文
- 中学高中教务处工作计划学校工作计划
- 小学数学第五册数学教学计划例文
- 小班班主任工作计划024个人工作计划
- 《无损耗线驻波》课件
- MOOC 食品化学-苏州农业职业技术学院 中国大学慕课答案
- 高二数学测试卷(含答案)-文档
- (正式版)JBT 3300-2024 平衡重式叉车 整机试验方法
- 口腔科普馆建设方案设计
- 维保服务方案及维保体系
- 2024年月英语六级高频核心词考前必备
- 情感修复计划书
- 大国脊梁智慧树知到期末考试答案2024年
- 铁路道口安全管理
- 电厂粉煤灰储灰场施工组织设计样本
- 腰腿痛病人的中医护理
评论
0/150
提交评论