2025届宁夏回族自治区银川市兴庆区宁一中高考全国统考预测密卷数学试卷含解析_第1页
2025届宁夏回族自治区银川市兴庆区宁一中高考全国统考预测密卷数学试卷含解析_第2页
2025届宁夏回族自治区银川市兴庆区宁一中高考全国统考预测密卷数学试卷含解析_第3页
2025届宁夏回族自治区银川市兴庆区宁一中高考全国统考预测密卷数学试卷含解析_第4页
2025届宁夏回族自治区银川市兴庆区宁一中高考全国统考预测密卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届宁夏回族自治区银川市兴庆区宁一中高考全国统考预测密卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的值为()A. B. C. D.2.设全集,集合,,则集合()A. B. C. D.3.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.4.“”是“直线与互相平行”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.设,则A. B. C. D.6.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e) B.C. D.(0,1)7.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A. B. C. D.8.在中,为边上的中线,为的中点,且,,则()A. B. C. D.9.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.11.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.12.设且,则下列不等式成立的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.14.实数,满足,如果目标函数的最小值为,则的最小值为_______.15.已知两个单位向量满足,则向量与的夹角为_____________.16.已知实数,对任意,有,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.18.(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)写出直线的普通方程与曲线的直角坐标方程;(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.19.(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.20.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.21.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围.22.(10分)已知在四棱锥中,平面,,在四边形中,,,,为的中点,连接,为的中点,连接.(1)求证:.(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.2、C【解析】∵集合,,∴点睛:本题是道易错题,看清所问问题求并集而不是交集.3、A【解析】

根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.4、A【解析】

利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则,解得,,则“”是“直线与互相平行”的充分不必要条件,故选【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题.5、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6、D【解析】

原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a>2,令t,则f(x)=a⇔⇔⇔⇔.记g(t).当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.则⇔,记h(t)(t>2且t≠2),则h′(t).令φ(t),则φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.由,可得,即a<2.∴实数a的取值范围是(2,2).故选:D.【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.7、B【解析】

由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.8、A【解析】

根据向量的线性运算可得,利用及,计算即可.【详解】因为,所以,所以,故选:A【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.9、A【解析】

根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.10、D【解析】

先计算,然后将进行平方,,可得结果.【详解】由题意可得:∴∴则.故选:D.【点睛】本题考查的是向量的数量积的运算和模的计算,属基础题。11、B【解析】

根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.12、A【解析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解.【详解】解:由的展开式的通项,令,得含有的项的系数是,解得,令得:展开式中各项系数和为,故答案为:1.【点睛】本题考查了二项式定理及展开式通项公式,属于中档题.14、【解析】

作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为.等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.15、【解析】

由得,即得解.【详解】由题意可知,则.解得,所以,向量与的夹角为.故答案为:【点睛】本题主要考查平面向量的数量积的计算和夹角的计算,意在考查学生对这些知识的理解掌握水平.16、-1【解析】

由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解.【详解】由,且,则,又,所以,令得:,所以,故答案为:.【点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】

(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.18、(1)的普通方程为.的直角坐标方程为(2)(-1,0)或(2,3)【解析】

(1)对直线的参数方程消参数即可求得直线的普通方程,对整理并两边乘以,结合,即可求得曲线的直角坐标方程。(2)由(1)得:曲线C是以Q(1,1)为圆心,为半径的圆,设点P的坐标为,由题可得:,利用两点距离公式列方程即可求解。【详解】解:(1)由消去参数,得.即直线的普通方程为.因为又,∴曲线的直角坐标方程为(2)由知,曲线C是以Q(1,1)为圆心,为半径的圆设点P的坐标为,则点P到上的点的最短距离为|PQ|即,整理得,解得所以点P的坐标为(-1,0)或(2,3)【点睛】本题主要考查了参数方程化为普通方程及极坐标方程化为直角坐标方程,还考查了转化思想及两点距离公式,考查了方程思想及计算能力,属于中档题。19、(1)见解析;(2).【解析】

(1)取的中点,连接、,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得二面角的余弦值,进而可求得其正弦值.【详解】(1)取中点,连接、、,且,四边形为平行四边形,且,、分别为、中点,且,则四边形为平行四边形,且,且,且,所以,四边形为平行四边形,且,四边形为平行四边形,,平面,平面,平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,,设平面的法向量为,由,得,取,则,,,设平面的法向量为,由,得,取,则,,,,,因此,二面角的正弦值为.【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.20、(1),证明见解析;(2)【解析】

(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论