



文档简介
函数y=2x-cos(x+1)的性质及其图像主要内容:本文介绍三角函数y=2x-cos(x+1)的定义域、单调性、凸凹性等函数性质,并通过导数知识求解函数的凸凹区间,简要画出函数在[-(2π+1),2π-1]区间上的图像示意图。※.函数的定义域根据函数的特征,函数是一次函数y1=2x和余弦函数y2=cos(x+1)的和函数,且二者的定义域为全体实数,所以其和函数的定义域也为全体实数,即为(-∞,+∞)。※.函数单调性本题用导数知识来判断函数的单调性并求解函数的单调区间。因为y=2x-cos(x+1),两边同时求导有:所以eq\f(dy,dx)=2+sin(x+1),又因为|sin(x+1)|≤1,则eq\f(dy,dx)≥2-1=1>0,所以函数y为增函数。※.函数的凸凹性本题用导数知识来判断函数的凸凹性并求解函数的凸凹区间。再次对x求导有:eq\f(d2y,dx2)=cos(x+1),令eq\f(d2y,dx2)=0,则cos(x+1)=0,即:x+1=kπ+eq\f(π,2),k∈Z.结合本题限制区间[-(2π+1),2π-1],即:x+1∈[-2π,2π],所以此时有k=-2,-1,0,1,分别对应x+1=-eq\f(3π,2),-eq\f(π,2),eq\f(π,2),eq\f(3π,2),进一步求出:x对应为:-eq\f(3π+2,2),-eq\f(π+2,2),eq\f(π-2,2),eq\f(3π-2,2);则函数的凸凹区间为:(1)当x在[-eq\f(3π+2,2),-eq\f(π+2,2)]∪[eq\f(π-2,2),eq\f(3π-2,2)]时,eq\f(d2y,dx2)<0,此时函数y为凸函数;(2)当x在[-(2π+1),-eq\f(3π+2,2)]∪[-eq\f(π+2,2),eq\f(π-2,2)]∪[eq\f(3π-2,2),2π+1]时,eq\f(d2y,dx2)>0,此时函数y为凹函数。※.函数的部分点图x-(2π+1)-eq\f(7π+4,4)-eq\f(3π+2,2)-eq\f(5π+4,4)-(π+1)-7.3-6.5-5.7-4.9-4.1x+1-2π-eq\f(7π,4)-eq\f(3π,2)-eq\f(5π,4)-πcos(x+1)1eq\f(\r(2),2)0-eq\f(\r(2),2)-12x-2*(2π+1)-eq\f(1,2)(7π+4)-(3π+2)-eq\f(1,2)*(5π+4)-2(π+1)y-15.6-13.7-11.4-9.1-7.2x-(π+1)-eq\f(3π+4,4)-eq\f(π+2,2)-eq\f(π+4,4)-1-4.1-3.4-2.6-1.8-1.0x+1-π-eq\f(3π,4)-eq\f(π,2)-eq\f(π,4)0cos(x+1)-1-eq\f(\r(2),2)0eq\f(\r(2),2)12x-2*(π+1)-eq\f(1,2)*(3π+4)-(π+2)-eq\f(1,2)*(π+4)-2y-7.2-6.1-5.2-4.3-3.0x-1eq\f(π-4,4)eq\f(π-2,2)eq\f(3π-4,4)π-1-1.0-0.20.61.42.1x+10eq\f(π,4)eq\f(π,2)eq\f(5π,4)πcos(x+1)1eq\f(\r(2),2)0-eq\f(\r(2),2)-12x-2eq\f(1,2)*(π-4)π-2eq\f(1,2)*(3π-4)2*(π-1)y-3.0-1.11.23.55.2xπ-1eq\f(5π-4,4)eq\f(3π-2,2)eq\f(7π-4,4)2π-12.12.93.74.55.3x+1πeq\f(5π,4)eq\f(3π,2)eq\f(7π,4)2πcos(x+1)-1-eq\f(\r(2),2)0eq\f(\r(2),2)12x2(π-1)eq\f(1,2)*(5π-4)(3π-2)eq\f(1,2)*(7π-4)2(2π-1)y5.26.88.18.39.6※.函数的示意图y=2x-cos(x+1) y(5.3,9.6)(3.7,8.1)(2.1,5.2)(0.6,1.2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省广州市高中名校2015-2016学年高二上学期期中考试政治(文)试卷及答案
- 电子商务教学技术应用试题及答案
- 2025进出口信用证质押外汇借款合同
- 2024年马工学管理的数据驱动决策试题及答案
- 2025-2030中国高纯电子级过氧化氢行业市场深度调研及投资发展前景研究报告
- 2025-2030中国高纯度砷化锌(ZnAs2CAS12044552)行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国高精度定位行业市场发展分析及发展前景与投资机会研究报告
- 2025年个人水电站实习报告(4篇)
- 2025-2030中国高空作业机械设备行业发展趋势及市场前景预测研究报告
- 2025-2030中国高温灭菌袋市场深度调查与发展趋势研究研究报告
- 合同管理知识培训课件
- 中国艺术歌曲赏析及实践知到课后答案智慧树章节测试答案2025年春四川音乐学院
- 校园法制宣传课件
- 2025中国信创服务器厂商研究报告-亿欧智库
- 2025年辽宁省盘锦市事业单位公开招聘高校毕业生历年高频重点模拟试卷提升(共500题附带答案详解)
- 2025年浙江杭州建德市林业总场下属林场招聘8人高频重点模拟试卷提升(共500题附带答案详解)
- 流行性感冒诊疗方案(2025年版)权威解读
- 《水库大坝安全监测管理办法》知识培训
- 裂隙等密度(玫瑰花图)-简版
- 2025年河南工业职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年宁波职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
评论
0/150
提交评论