湖南文理学院《人工智能》2021-2022学年第一学期期末试卷_第1页
湖南文理学院《人工智能》2021-2022学年第一学期期末试卷_第2页
湖南文理学院《人工智能》2021-2022学年第一学期期末试卷_第3页
湖南文理学院《人工智能》2021-2022学年第一学期期末试卷_第4页
湖南文理学院《人工智能》2021-2022学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页湖南文理学院《人工智能》

2021-2022学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的强化学习中,假设智能体在探索环境时面临高风险的动作选择,以下哪种策略能够平衡探索和利用,以实现更好的学习效果?()A.ε-贪心策略,以一定概率随机选择动作B.始终选择最优动作,不进行探索C.随机选择动作,不考虑之前的经验D.只在初始阶段进行探索,之后完全利用2、人工智能中的生成对抗网络(GAN)在图像生成、数据增强等方面表现出色。假设要使用GAN生成逼真的艺术图像,以下关于GAN训练过程的描述,哪一项是不准确的?()A.生成器试图生成逼真的图像来欺骗判别器,判别器则努力区分真实图像和生成的图像B.训练过程中,生成器和判别器的性能会交替提升,直到达到平衡C.一旦GAN训练完成,生成器就能够独立生成高质量的图像,无需判别器的参与D.调整生成器和判别器的网络结构和参数,可以影响生成图像的质量和多样性3、假设在一个智能农业的应用中,需要利用人工智能技术来监测农作物的生长状况并预测病虫害的发生,以下哪种数据源和分析方法可能是重要的组成部分?()A.卫星图像和图像分析B.传感器数据和时间序列分析C.气象数据和机器学习模型D.以上都是4、强化学习是人工智能的一个重要分支,常用于训练智能体做出最优决策。假设一个智能体在一个复杂的环境中学习,以下关于强化学习的描述,正确的是:()A.智能体通过随机尝试不同的动作来学习,不需要任何奖励反馈B.奖励函数的设计对智能体的学习效果没有影响,只要有足够的训练时间就能学会最优策略C.强化学习算法能够保证智能体在有限的时间内找到绝对最优的决策策略D.智能体在学习过程中会不断调整策略以最大化累积奖励5、人工智能中的自动机器学习(AutoML)旨在自动化模型的选择和调优过程。假设一个企业没有专业的数据科学家,希望使用AutoML来构建模型。以下关于自动机器学习的描述,哪一项是错误的?()A.AutoML可以自动搜索合适的算法、超参数和特征工程方法B.能够降低模型开发的门槛,使非专业人员也能构建有效的人工智能模型C.AutoML生成的模型总是优于由经验丰富的数据科学家手动构建的模型D.但仍需要一定的人工干预和监督,以确保模型的合理性和可靠性6、人工智能中的“胶囊网络(CapsuleNetwork)”的主要优势是?()A.对姿态和变形的鲁棒性B.减少参数数量C.提高训练速度D.增强可解释性7、在人工智能的研究中,算法的选择和优化至关重要。假设要解决一个复杂的优化问题。以下关于人工智能算法的描述,哪一项是不准确的?()A.遗传算法通过模拟生物进化过程来寻找最优解B.蚁群算法受蚂蚁觅食行为启发,适用于求解组合优化问题C.不同的算法适用于不同类型的问题,没有一种算法能够通用于所有情况D.算法的性能只取决于其理论复杂度,与实际应用中的数据特点和计算环境无关8、在人工智能的语音处理领域,语音合成技术旨在生成自然流畅的人类语音。假设要开发一个能够为有声读物生成逼真语音的系统,需要考虑语音的韵律、语调等因素。以下哪种语音合成方法在生成高质量、富有表现力的语音方面表现更为突出?()A.拼接式语音合成B.参数式语音合成C.基于深度学习的端到端语音合成D.基于规则的语音合成9、知识图谱是人工智能中用于表示知识和关系的一种技术。假设一个智能问答系统基于知识图谱来回答用户的问题。以下关于知识图谱的描述,哪一项是错误的?()A.知识图谱将实体、关系和属性以图的形式组织起来,便于知识的表示和查询B.可以通过从大量文本中自动抽取信息来构建知识图谱C.知识图谱中的知识是固定不变的,一旦构建完成就无需更新D.结合自然语言处理技术,能够实现基于知识图谱的智能问答和推理10、人工智能中的语音识别技术在许多领域都有应用,如语音助手和智能客服。假设正在改进一个语音识别系统的性能,以下关于语音识别的描述,正确的是:()A.语音识别的准确率只取决于声学模型,语言模型对其影响不大B.环境噪声对语音识别的结果没有显著影响,系统可以自动过滤噪声C.不断优化声学模型和语言模型,并结合大量的语音数据进行训练,可以提高语音识别的准确率D.语音识别系统不需要考虑不同人的口音和语速差异,能够统一处理11、人工智能在语音识别领域取得了重大进展。假设要开发一个能够实时将语音转换为文字的系统,以下关于语音识别的描述,哪一项是不正确的?()A.声学模型用于分析语音的声学特征,语言模型用于理解语言的语法和语义B.深度神经网络在语音识别中能够提高识别准确率和鲁棒性C.语音识别系统在各种环境和口音条件下都能达到100%的准确率D.对大量不同口音和背景噪音的语音数据进行训练,可以提升系统的适应性12、在人工智能的发展趋势中,边缘计算与人工智能的结合越来越受到关注。假设我们要在物联网设备上实现实时的人工智能推理,以下关于边缘计算与人工智能融合的描述,哪一项是不正确的?()A.可以减少数据传输延迟,提高响应速度B.能够降低对云计算中心的依赖C.边缘设备的计算能力足以处理所有复杂的人工智能任务D.需要考虑能源消耗和设备成本等因素13、当利用人工智能技术进行股票市场的预测时,需要综合考虑多种因素,如公司财务数据、宏观经济指标、市场情绪等。在这种复杂的场景下,以下哪种人工智能方法可能具有较大的潜力?()A.基于规则的专家系统B.强化学习C.遗传算法D.模糊逻辑14、在人工智能的音频处理中,语音增强是一项重要任务。假设要提高在嘈杂环境中录制的语音的清晰度,以下关于语音增强技术的描述,正确的是:()A.简单的滤波方法就能够完全去除噪声,恢复清晰的语音B.语音增强技术只对特定类型的噪声有效,对复杂的噪声环境无能为力C.结合深度学习算法和声学模型,可以更有效地从噪声中提取有用的语音信息D.语音增强的效果不受原始语音质量和噪声强度的影响15、假设要开发一个能够在复杂环境中自主导航的智能机器人,例如在仓库中搬运货物,以下哪个模块对于机器人的决策和行动至关重要?()A.环境感知模块B.路径规划模块C.运动控制模块D.以上都是二、简答题(本大题共4个小题,共20分)1、(本题5分)简述神经网络的结构和工作原理。2、(本题5分)说明人工智能在环境影响评估和可持续发展目标实现中的应用。3、(本题5分)简述人工智能在考古学中的应用。4、(本题5分)说明人工智能研究中的责任和规范。三、操作题(本大题共5个小题,共25分)1、(本题5分)利用Python的Keras库,实现一个基于门控循环单元(GRU)的模型,对金融市场的新闻数据进行市场情绪分析。结合文本挖掘和情感分析技术,预测市场的走势。2、(本题5分)利用Python的OpenCV库,实现对图像的均值漂移聚类。分析聚类结果和参数的关系。3、(本题5分)使用Python的TensorFlow框架,构建一个基于变分自编码器(VAE)的图像压缩模型。实现对图像的高效压缩和还原,比较压缩比和图像质量。4、(本题5分)基于Python的Keras库,构建一个深度强化学习模型,让智能体在一个模拟的迷宫环境中学习找到出口的最优策略。设计合理的奖励机制和环境交互方式,观察智能体的学习效果。5、(本题5分)使用聚类算法对社交网络数据进行分析,发现不同的社交群体和关系,为社交网络分析提供支持。四、案例分析题(本大题共4个小题,共40分)1、(本题10分)剖析某智

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论