北京邮电大学世纪学院《计算机视觉》2021-2022学年第一学期期末试卷_第1页
北京邮电大学世纪学院《计算机视觉》2021-2022学年第一学期期末试卷_第2页
北京邮电大学世纪学院《计算机视觉》2021-2022学年第一学期期末试卷_第3页
北京邮电大学世纪学院《计算机视觉》2021-2022学年第一学期期末试卷_第4页
北京邮电大学世纪学院《计算机视觉》2021-2022学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第2页,共2页北京邮电大学世纪学院《计算机视觉》

2021-2022学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉在无人驾驶中的应用需要对周围环境进行快速准确的感知。假设车辆要在复杂的城市道路环境中行驶,以下哪种传感器的数据融合可能对提高环境感知的可靠性至关重要?()A.摄像头与激光雷达B.摄像头与毫米波雷达C.激光雷达与超声波传感器D.以上都有可能2、计算机视觉在工业检测中的应用可以提高生产效率和质量。假设要检测生产线上产品的表面缺陷,以下关于工业检测中的计算机视觉技术的描述,正确的是:()A.传统的机器视觉方法在检测复杂的表面缺陷时比深度学习方法更可靠B.深度学习模型需要大量的有缺陷和无缺陷样本进行训练,才能准确检测出各种缺陷C.工业检测中的计算机视觉系统不需要考虑实时性和准确性的平衡D.产品的颜色和材质对表面缺陷检测的结果没有影响3、在计算机视觉领域中,当需要对监控视频中的行人进行实时检测和跟踪,以实现智能安防系统的功能时,以下哪种方法在处理复杂场景和多目标跟踪方面可能表现更为出色?()A.基于传统图像处理的方法B.基于深度学习的目标检测算法C.基于特征匹配的跟踪算法D.基于光流法的跟踪算法4、在计算机视觉的图像修复任务中,恢复图像中缺失或损坏的部分。假设要修复一张老照片中缺失的部分,以下关于图像修复方法的描述,正确的是:()A.基于纹理合成的图像修复方法能够完美恢复复杂的结构和细节B.深度学习中的自编码器在图像修复中无法学习到有效的特征表示C.图像修复的结果不受缺失区域的大小和形状的影响D.结合先验知识和上下文信息的深度学习方法可以产生更合理和自然的修复效果5、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响6、计算机视觉中的图像去噪旨在去除图像中的噪声,同时保留图像的细节和结构。假设我们有一张受到严重噪声污染的医学图像,以下哪种图像去噪方法能够在去除噪声的同时,最大程度地保留图像的边缘和纹理信息?()A.均值滤波B.中值滤波C.高斯滤波D.基于小波变换的去噪方法7、在计算机视觉中,以下哪种方法常用于图像的语义分割中的边界优化?()A.条件随机场B.全连接条件随机场C.深度学习D.以上都是8、在计算机视觉中,图像去雾是提高有雾图像质量的技术。以下关于图像去雾的描述,不准确的是()A.图像去雾可以基于物理模型或深度学习方法来实现B.深度学习方法在图像去雾中能够有效地恢复图像的细节和颜色C.图像去雾只对轻度有雾的图像有效,对于浓雾图像效果不佳D.图像去雾可以提高图像的清晰度和可视性,有助于后续的处理和分析9、计算机视觉在自动驾驶领域有重要应用。假设车辆需要根据摄像头采集的图像来识别道路上的交通标志,并且要在不同天气和光照条件下都能准确识别。以下哪种方法可能有助于提高交通标志识别的鲁棒性?()A.使用多个不同类型的摄像头获取图像B.仅依赖颜色特征进行识别C.采用简单的线性分类器进行标志分类D.减少训练数据中的交通标志种类10、在计算机视觉的目标识别任务中,假设目标物体被部分遮挡,以下哪种模型架构可能更有助于恢复被遮挡部分的信息?()A.多层感知机(MLP)B.卷积神经网络(CNN)C.循环神经网络(RNN)D.注意力机制(AttentionMechanism)11、图像检索是计算机视觉的一个重要应用。假设我们要在一个大型图像数据库中快速找到与给定查询图像相似的图像,以下哪种图像表示方法可能对提高检索效率有帮助?()A.全局特征表示B.局部特征表示C.基于深度学习的特征表示D.基于颜色直方图的特征表示12、在计算机视觉的图像质量评估任务中,假设要评估一张经过处理后的图像的质量。以下关于图像质量评估方法的描述,正确的是:()A.主观评估方法通过人的观察和判断来评价图像质量,结果准确可靠B.客观评估方法中的全参考方法需要原始未失真图像作为参考,计算复杂度低C.无参考图像质量评估方法能够在没有原始图像的情况下准确评估图像质量D.所有的图像质量评估方法都能够完全反映人对图像质量的主观感受13、在计算机视觉的表情识别任务中,判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情识别方法的描述,哪一项是不正确的?()A.可以通过分析面部肌肉的运动和特征点的变化来识别表情B.深度学习模型能够学习不同表情的模式和特征,实现准确的表情分类C.表情识别系统需要考虑光照、头部姿态和遮挡等因素的影响D.表情识别可以准确地识别出所有细微和复杂的表情,不受个体差异和文化背景的影响14、计算机视觉中的显著性检测旨在找出图像中引人注目的区域。假设要在一张复杂的自然风景图像中检测显著性区域,以下关于显著性检测方法的描述,哪一项是不正确的?()A.基于对比度的方法通过计算图像区域与周围区域的差异来确定显著性B.基于频域分析的方法可以从图像的频谱中提取显著性信息C.深度学习方法能够学习图像的全局和局部特征,实现更准确的显著性检测D.显著性检测的结果总是与人类的视觉注意力机制完全一致,没有偏差15、计算机视觉在自动驾驶领域有重要应用。假设要开发一个能够识别道路标志的系统,以下关于应对不同光照条件的策略,哪一项是最为有效的?()A.使用固定的阈值对图像进行二值化处理B.采用自适应的图像增强算法,根据光照情况调整图像C.忽略光照变化,依靠模型的泛化能力D.只在特定的光照条件下收集训练数据16、计算机视觉中的车牌识别是智能交通系统中的重要组成部分。假设要在一个高速公路收费站实现准确的车牌识别,以下关于车牌识别方法的描述,正确的是:()A.基于边缘检测和字符分割的方法对车牌的变形和污渍具有很强的适应性B.深度学习中的卷积神经网络能够直接从车牌图像中识别出字符,但对车牌的倾斜和光照不均敏感C.车牌识别系统只需要在白天光照良好的条件下工作,夜间和恶劣天气下无法正常运行D.车牌识别的准确率只取决于车牌图像的清晰度,与车牌的颜色和字体无关17、计算机视觉中的目标跟踪是指在视频序列中持续跟踪特定的目标。以下关于目标跟踪的叙述,不正确的是()A.目标跟踪可以基于特征匹配、滤波算法或深度学习方法来实现B.目标的外观变化、遮挡和背景干扰等因素会给目标跟踪带来挑战C.目标跟踪在智能监控、人机交互和自动驾驶等领域有着广泛的应用D.目标跟踪算法能够在任何情况下都准确地跟踪目标,不受复杂环境的影响18、在计算机视觉的图像去模糊任务中,需要恢复由于相机抖动或物体运动导致的模糊图像。假设一张夜景照片由于长时间曝光而模糊,同时存在噪声和低光照条件。以下哪种图像去模糊算法在处理这种情况时效果较好?()A.盲去卷积算法B.基于正则化的去模糊算法C.深度学习的去模糊模型D.频域去模糊方法19、计算机视觉中的图像风格迁移是一项有趣的任务。假设要将一幅油画的风格应用到一张照片上,以下关于模型训练的要点,哪一项是不正确的?()A.学习油画和照片的特征表示,找到风格和内容的分离方式B.只关注风格的迁移,不考虑照片原始内容的保留C.采用对抗训练,使生成的图像在风格和内容上达到平衡D.调整模型参数,控制风格迁移的强度和效果20、在计算机视觉中,视频摘要生成是从长视频中提取关键内容并生成简洁的摘要。以下关于视频摘要生成的叙述,不正确的是()A.视频摘要生成可以基于关键帧提取、内容分析和故事线构建等方法B.深度学习方法能够学习视频的语义信息,生成更有代表性的摘要C.视频摘要生成在视频浏览、检索和存储等方面具有实用价值D.视频摘要生成能够完全准确地反映视频的所有重要内容,没有任何信息丢失二、简答题(本大题共3个小题,共15分)1、(本题5分)说明计算机视觉在仪器仪表制造中的质量检测。2、(本题5分)简述图像的色彩校正工具。3、(本题5分)说明计算机视觉在沙漠化监测中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)分析某大学的校庆活动海报设计,探讨其如何通过色彩、图形、文字等元素传达校庆的主题和学校的历史文化底蕴,吸引校友和师生参加。2、(本题5分)某城市的公共交通卡设计更新,新卡面融合了城市地标和文化符号。请研究此交通卡设计如何体现城市特色,如何方便用户识别和使用,以及在传播城市形象方面的作用。3、(本题5分)分析亚马逊的Prime会员广告设计,从会员权益、专属服务到品牌形象传达。讨论其如何吸引消费者加入Pr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论