版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页安徽工业大学《人工智能技术及其应用》
2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的文本生成任务中,除了生成连贯的文字内容,还需要考虑语言的逻辑性和合理性。假设我们要生成一篇新闻报道,以下关于文本生成的说法,哪一项是正确的?()A.可以完全依靠随机生成来创造新颖的内容B.语言模型的规模越大,生成的质量一定越高C.预训练语言模型结合微调可以提高生成效果D.不需要考虑语法和语义的约束2、人工智能在金融领域的应用越来越广泛,如风险评估、投资决策和欺诈检测等。以下关于人工智能在金融领域应用的描述,不准确的是()A.可以通过分析大量的金融数据,更准确地评估风险和预测市场趋势B.能够为投资者提供个性化的投资建议,优化投资组合C.人工智能在金融领域的应用完全消除了风险和错误,保障了金融交易的绝对安全D.金融机构在采用人工智能技术时,需要考虑合规性和监管要求3、在人工智能的模型评估中,需要选择合适的指标来衡量模型的性能。假设一个图像分类模型,以下关于模型评估指标的描述,正确的是:()A.准确率是唯一重要的评估指标,其他指标如召回率和F1值都不重要B.对于不平衡的数据集,准确率可能会产生误导,应该使用更合适的指标如召回率和F1值C.模型评估指标只与模型的架构有关,与数据分布无关D.选择评估指标时不需要考虑具体的应用场景和需求4、在人工智能的智能推荐系统中,假设要为用户提供个性化的推荐服务,以下关于推荐算法的描述,正确的是:()A.协同过滤算法只考虑用户的历史行为,不考虑物品的特征B.基于内容的推荐算法能够根据物品的属性为用户推荐相似的物品C.混合推荐算法结合了多种推荐方法的优点,能够提供更准确的推荐D.以上推荐算法都存在一定的局限性,无法满足所有用户的需求5、在人工智能的应用中,智能推荐系统越来越普及。假设一个电商平台要为用户提供个性化的商品推荐,需要综合考虑用户的历史购买行为、浏览记录和商品的属性等多方面信息。以下哪种算法或模型在处理这种多源异构数据的推荐任务上表现更为出色?()A.协同过滤算法B.基于内容的推荐算法C.混合推荐算法D.关联规则挖掘6、人工智能中的无人驾驶技术面临着众多技术和法律挑战。假设我们在讨论无人驾驶汽车的责任归属问题,以下关于无人驾驶责任的说法,哪一项是不正确的?()A.事故责任的判定应该综合考虑多种因素B.完全由无人驾驶汽车的制造商承担责任C.法律法规需要随着技术发展不断完善D.乘客在某些情况下也可能承担一定责任7、在人工智能的自动驾驶伦理问题中,例如在面临不可避免的事故时如何做出决策,以下哪种思考角度和原则可能是需要被考虑的?()A.功利主义原则B.道义论原则C.权利主义原则D.以上都是8、在人工智能的自然语言生成任务中,预训练语言模型如GPT-3取得了显著进展。假设要使用预训练语言模型生成一篇新闻报道,以下哪个步骤是最重要的?()A.选择合适的预训练模型B.对模型进行微调C.设计输入的提示信息D.评估生成的文本质量9、人工智能中的联邦学习技术旨在保护数据隐私的同时实现模型的协同训练。假设多个机构拥有各自的私有数据,需要共同训练一个模型。以下哪种联邦学习算法或框架在处理数据异构和通信效率方面表现更为优秀?()A.横向联邦学习B.纵向联邦学习C.联邦迁移学习D.以上框架根据具体情况选择10、人工智能在教育领域有潜在的应用价值。假设要开发一个个性化学习系统,能够根据学生的学习情况提供定制的学习计划。以下关于收集学生学习数据的方法,哪一项是需要谨慎处理的?()A.跟踪学生在在线学习平台上的学习时间、答题情况等B.收集学生的个人兴趣爱好和家庭背景等信息C.分析学生的作业和考试成绩,了解其知识掌握程度D.通过问卷调查了解学生的学习风格和偏好11、人工智能是当前科技领域的热门话题,其应用涵盖了众多领域。以下关于人工智能的定义,不准确的是()A.人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学B.人工智能是指让计算机像人类一样思考和行动,能够自主地解决各种复杂问题C.人工智能仅仅是通过大量的数据训练来实现对特定任务的预测和决策,不涉及对智能本质的探索D.人工智能旨在创造出能够感知环境、学习知识、进行推理和决策,并能够与人类进行交互的智能体12、人工智能在自动驾驶领域的应用具有巨大的潜力,但也面临诸多挑战。假设一辆自动驾驶汽车正在道路上行驶,以下关于自动驾驶中的人工智能技术的描述,正确的是:()A.自动驾驶汽车完全依赖传感器数据和人工智能算法,不需要人类驾驶员的任何干预B.人工智能算法能够在所有复杂的交通场景中做出完美的决策,不会出现错误C.自动驾驶系统需要融合多种传感器数据,并通过深度学习算法进行实时的环境感知和决策制定D.自动驾驶中的人工智能技术已经非常成熟,不存在任何安全隐患13、人工智能在教育领域有着创新应用。假设要开发一个自适应学习系统,以下关于其应用的描述,哪一项是不准确的?()A.根据学生的学习进度和表现,动态调整学习内容和难度B.利用情感分析技术了解学生的学习情绪,提供相应的激励和支持C.人工智能驱动的教育系统可以完全替代教师的角色,实现自主学习D.结合虚拟现实和增强现实技术,创造沉浸式的学习体验14、在人工智能的发展历程中,机器学习作为重要的分支取得了显著的成果。假设要开发一个能够自动识别手写数字的系统,需要从大量的手写数字图像数据中学习特征和模式。以下哪种机器学习算法在处理这种图像数据分类问题上具有较大的优势,同时能够适应不同的书写风格和变形?()A.决策树算法B.朴素贝叶斯算法C.卷积神经网络(CNN)D.支持向量机(SVM)15、人工智能中的人工神经网络具有强大的学习能力。假设我们正在训练一个多层神经网络来预测股票价格的走势。如果网络的训练数据包含了过多的噪声,会产生什么后果?()A.网络的泛化能力增强B.网络的训练速度加快C.网络可能对新的数据预测不准确D.网络的结构变得更加复杂16、自然语言处理是人工智能的重要应用领域之一。假设我们要开发一个能够自动回答用户问题的智能客服系统,需要对大量的文本数据进行学习和理解。在这个过程中,词向量模型如Word2Vec和GloVe起到了关键作用。那么,关于词向量模型,以下说法哪一项是不准确的?()A.能够将单词表示为低维的实数向量,捕捉单词之间的语义关系B.可以通过对大规模语料库的无监督学习得到C.不同的词向量模型在处理多义词时效果都很好D.词向量的计算可以基于单词的上下文信息17、在人工智能的模型训练中,超参数的调整是一个关键步骤。假设正在训练一个用于文本生成的循环神经网络(RNN),以下关于超参数选择的方法,哪一项是不太可取的?()A.基于经验和直觉,随机选择一组超参数进行试验B.使用网格搜索或随机搜索等方法,系统地尝试不同的超参数组合C.借鉴已有的相关研究和实践中常用的超参数设置D.利用自动超参数调整工具,如Hyperopt,根据验证集的性能自动寻找最优超参数18、在人工智能的机器学习算法中,决策树是一种常见的算法。假设我们要根据一些用户的特征来预测他们是否会购买某款产品,使用决策树进行建模。那么,关于决策树的特点,以下哪一项是不正确的?()A.易于理解和解释,生成的决策规则清晰明了B.对数据的噪声和缺失值比较敏感C.能够处理非线性关系的数据D.决策树的构建不需要进行特征选择19、在人工智能的情感分析任务中,比如分析社交媒体上用户对某一产品的态度是积极还是消极,以下哪种特征提取方法可能会产生重要影响?()A.基于词袋模型B.基于词嵌入C.基于语法结构D.基于语义网络20、人工智能在医疗影像诊断中的应用不断发展。以下关于人工智能在医疗影像诊断应用的说法,不正确的是()A.能够辅助医生更快速、准确地检测病变和异常B.可以提高诊断的一致性和重复性,减少人为误差C.人工智能的诊断结果可以完全替代医生的专业判断D.需要与医生的临床经验和专业知识相结合,共同为患者提供诊断服务21、人工智能在智能客服领域的应用需要能够理解用户的复杂问题并给出准确的回答。假设要构建一个智能客服系统,能够处理多种领域的问题,以下哪种技术或方法在提高系统的泛化能力和回答准确性方面最为重要?()A.大规模预训练语言模型B.基于模板的回答生成C.知识库的构建和维护D.以上方法同等重要22、在人工智能的情感识别中,假设要从一段较长的语音中准确捕捉到细微的情感变化。以下哪种技术或方法可能有助于实现这一目标?()A.分析语音的韵律特征,如语调、语速B.只关注语音的内容,忽略语音的表现形式C.对语音进行分段处理,分别进行情感识别D.不进行任何预处理,直接分析原始语音23、在人工智能的图像超分辨率任务中,假设需要将低分辨率图像恢复为高分辨率图像,同时保持图像的细节和清晰度。以下哪种方法通常能够取得较好的效果?()A.基于深度学习的超分辨率模型,学习图像的特征和模式B.传统的插值方法,如双线性插值C.对低分辨率图像进行简单的放大处理D.随机生成高分辨率图像24、人工智能中的机器学习算法可以分为监督学习、无监督学习和强化学习等。假设要对一组未标记的数据进行分类,以下哪种学习算法可能最为适用?()A.监督学习中的线性回归算法,通过拟合数据的线性关系进行分类B.无监督学习中的K-Means聚类算法,自动将数据分为不同的簇C.强化学习中的Q-Learning算法,通过与环境交互学习最优策略D.以上算法都不适合对未标记数据进行分类25、在人工智能的聚类分析中,例如将客户按照消费行为进行分组,假设数据分布不规则且存在噪声。以下哪种聚类算法在这种情况下可能表现较好?()A.K-Means聚类算法,基于距离进行分组B.层次聚类算法,构建层次结构C.密度聚类算法,基于密度进行分组D.随机聚类算法,随机分配数据到不同组二、简答题(本大题共4个小题,共20分)1、(本题5分)说明人工智能在林业和生态保护中的作用。2、(本题5分)说明人工智能在库存管理和供应链预测中的优势。3、(本题5分)解释人工智能中的数据偏见问题。4、(本题5分)谈谈人工智能在智能创新项目评估中的方法。三、案例分析题(本大题共5个小题,共25分)1、(本题5分)考察一个基于人工智能的智能绘画人才职业规划系统,讨论其如何为绘画人才规划职业道路。2、(本题5分)考察某智能民间戏曲文化传承效果监测系统中人工智能的监测指标和反馈机制。3、(本题5分)研究一个使用人工智能的智能广告投放系统,分析其如何精准定位目标受众和提高广告效果。4、(本题5分)研究一个使用人工智能的智能影视制作成本预测系统,分析其如何准确预测制作成本。5、(本题5分)研究一个基于人工智能的传统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 垃圾处理设施安装协议
- 2024年建设合同:城市地铁边坡支护工程2篇
- 社会研究场地租赁合同
- 港口建设施工合同协议书
- 公园步道沥青铺设合同
- 2024专业拍卖师劳动协议版A版
- 城市广场绿化改造承包合同
- 家电企业出纳岗位招聘合同
- 高速公路维修专业施工合同范本
- 健身房运动场地铺设合同
- 《人力资源管理》全套教学课件
- 民用无人机操控员执照(CAAC)考试复习重点题库500题(含答案)
- 中国法律史-第一次平时作业-国开-参考资料
- 年级组长工作手册1
- 动物医学-毕业论文
- actl是当前世界治疗癌症的领先技术
- 德育课程体系简图
- 供应商年度审核计划及现场审核表
- (完整word版)铣槽12专用夹具资料
- 个人书面检查三篇
- 一年级数学上学期培优辅差记录表
评论
0/150
提交评论