安徽工程大学《人工智能概论》2022-2023学年第一学期期末试卷_第1页
安徽工程大学《人工智能概论》2022-2023学年第一学期期末试卷_第2页
安徽工程大学《人工智能概论》2022-2023学年第一学期期末试卷_第3页
安徽工程大学《人工智能概论》2022-2023学年第一学期期末试卷_第4页
安徽工程大学《人工智能概论》2022-2023学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页安徽工程大学《人工智能概论》

2022-2023学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、人工智能中的自动机器学习(AutoML)旨在自动化模型的选择和调优过程。假设一个企业没有专业的数据科学家,希望使用AutoML来构建模型。以下关于自动机器学习的描述,哪一项是错误的?()A.AutoML可以自动搜索合适的算法、超参数和特征工程方法B.能够降低模型开发的门槛,使非专业人员也能构建有效的人工智能模型C.AutoML生成的模型总是优于由经验丰富的数据科学家手动构建的模型D.但仍需要一定的人工干预和监督,以确保模型的合理性和可靠性2、在人工智能的自动驾驶道德决策问题中,假设自动驾驶汽车面临一个无法避免的碰撞场景,以下关于道德决策的描述,正确的是:()A.可以制定一套通用的道德规则,让自动驾驶汽车在所有情况下遵循B.道德决策应该完全由汽车制造商决定,用户没有参与的权利C.不同的文化和价值观可能导致对自动驾驶道德决策的不同看法D.自动驾驶汽车的道德决策不会受到法律和社会舆论的影响3、在人工智能的发展中,硬件的支持对于提高计算效率和性能至关重要。假设要训练一个大规模的深度学习模型,需要快速处理海量的数据。以下哪种硬件架构或设备在加速模型训练方面具有显著的优势?()A.CPUB.GPUC.TPUD.FPGA4、深度学习模型在图像识别、语音识别等领域取得了巨大的成功,但也面临着过拟合、计算资源需求大等挑战。假设要训练一个深度神经网络来识别各种动物的图像,然而数据量有限,为了避免过拟合同时提高模型的性能,以下哪种方法最为有效?()A.增加网络层数B.减少训练轮数C.使用数据增强技术D.降低学习率5、当利用人工智能进行欺诈检测,例如在金融交易中识别异常行为,以下哪种特征和模型可能是关键的因素?()A.用户行为特征B.交易模式特征C.复杂的深度学习模型D.以上都是6、人工智能中的预训练语言模型,如GPT-3,具有很强的语言理解和生成能力。假设要将这样的预训练模型应用于特定的任务,以下关于模型应用的描述,正确的是:()A.可以直接在预训练模型上进行微调,就能适应新的任务,无需额外的训练数据B.预训练模型的参数固定,不能根据任务需求进行调整和优化C.预训练模型的语言生成能力很强,但在特定领域的专业知识上可能存在不足D.预训练模型在所有自然语言处理任务中都能取得最优的效果7、在人工智能的机器人控制领域,强化学习可以让机器人通过与环境的交互不断优化自己的行为。假设一个机器人需要学会在不同地形上行走,以下哪个因素对于强化学习的效果影响最大?()A.环境的复杂度B.机器人的初始状态C.奖励函数的设计D.机器人的硬件性能8、在人工智能的发展中,数据的质量和数量对模型的性能有着重要影响。假设要训练一个高精度的图像识别模型。以下关于数据的描述,哪一项是不准确的?()A.数据的多样性和代表性对于模型的泛化能力至关重要B.大量的高质量标注数据通常能够显著提升模型的性能C.数据中的噪声和错误对模型的训练影响不大,可以忽略D.对数据进行清洗、预处理和增强等操作可以提高数据质量9、在人工智能的聚类分析中,例如将客户按照消费行为进行分组,假设数据分布不规则且存在噪声。以下哪种聚类算法在这种情况下可能表现较好?()A.K-Means聚类算法,基于距离进行分组B.层次聚类算法,构建层次结构C.密度聚类算法,基于密度进行分组D.随机聚类算法,随机分配数据到不同组10、在人工智能的图像生成任务中,变分自编码器(VAE)是一种常用的模型。假设要使用VAE生成新的图像,以下关于VAE的描述,正确的是:()A.VAE通过学习数据的潜在分布来生成新的图像,生成的图像与原始数据完全相同B.VAE生成的图像质量不如生成对抗网络(GAN),因此在实际应用中逐渐被淘汰C.VAE可以在生成图像的同时对图像进行压缩和编码,节省存储空间D.VAE只能用于生成简单的图像,如数字和几何图形,无法生成复杂的自然图像11、在人工智能的图像超分辨率任务中,假设需要将低分辨率图像恢复为高分辨率图像,同时保持图像的细节和清晰度。以下哪种方法通常能够取得较好的效果?()A.基于深度学习的超分辨率模型,学习图像的特征和模式B.传统的插值方法,如双线性插值C.对低分辨率图像进行简单的放大处理D.随机生成高分辨率图像12、情感计算是人工智能的一个新兴领域,旨在让计算机理解和处理人类的情感。假设要开发一个能够识别用户情感状态的系统。以下关于情感计算的描述,哪一项是不准确的?()A.可以通过分析语音、面部表情和文本等多模态信息来判断情感B.情感计算的应用可以包括心理咨询、客户服务等领域C.目前的情感计算技术已经能够准确无误地识别和理解所有复杂的人类情感D.情感模型的训练需要大量标注了情感标签的数据13、人工智能中的生成对抗网络(GAN)在图像生成、数据增强等方面表现出色。假设要使用GAN生成逼真的艺术图像,以下关于GAN训练过程的描述,哪一项是不准确的?()A.生成器试图生成逼真的图像来欺骗判别器,判别器则努力区分真实图像和生成的图像B.训练过程中,生成器和判别器的性能会交替提升,直到达到平衡C.一旦GAN训练完成,生成器就能够独立生成高质量的图像,无需判别器的参与D.调整生成器和判别器的网络结构和参数,可以影响生成图像的质量和多样性14、人工智能在教育领域的应用有望实现个性化学习和智能辅导。假设一个在线学习平台使用人工智能为学生提供个性化课程推荐,以下关于教育领域人工智能应用的描述,正确的是:()A.人工智能可以完全根据学生的学习成绩来推荐课程,无需考虑其他因素B.学生的学习习惯、兴趣和知识水平等因素都应该被纳入人工智能的课程推荐模型中C.人工智能在教育领域的应用可能会导致学生过度依赖技术,降低自主学习能力D.教育领域的人工智能应用不需要考虑教育伦理和学生隐私保护问题15、人工智能在智能家居领域的应用不断丰富。假设一个智能家居系统要利用人工智能实现自动化控制,以下关于其应用的描述,哪一项是不正确的?()A.根据家庭成员的习惯和环境条件,自动调整灯光、温度和家电设备B.利用语音识别和自然语言处理技术,实现与用户的自然交互C.人工智能可以完全理解用户的所有需求和意图,不会出现误解D.结合传感器数据和机器学习算法,实现能源的高效管理和节约二、简答题(本大题共4个小题,共20分)1、(本题5分)说明人工智能中的可解释性问题。2、(本题5分)谈谈人工智能在智能项目风险评估中的应用。3、(本题5分)解释人工智能在设备维护和预测性维修中的技术。4、(本题5分)谈谈人工智能在智能创新潜力评估中的应用。三、操作题(本大题共5个小题,共25分)1、(本题5分)利用Scikit-learn中的K近邻算法,对文本数据进行分类,如新闻分类、邮件分类等。提取文本的特征向量,分析不同距离度量和K值对分类结果的影响,选择最优的参数组合提高分类准确率。2、(本题5分)借助Python的强化学习框架,让智能体学习玩一个简单的游戏(如贪吃蛇或FlappyBird)。设计合适的奖励机制和状态表示,观察智能体的游戏水平提升过程。3、(本题5分)基于Python的Scikit-learn库,使用支持向量机(SVM)算法对一个医学数据集进行疾病诊断分类。探索不同的核函数和参数选择对分类准确率的影响。4、(本题5分)使用Python中的Scikit-learn库,实现AffinityPropagation聚类算法对数据进行聚类,分析算法在不同类型数据上的适用性。5、(本题5分)使用Python的TensorFlow框架,构建一个基于强化学习的自动驾驶汽车控制模型。在模拟环境中训练汽车学会遵守交通规则,安全行驶。四、案例分析题(本大题共4个小题,共40分)1、(本题10分)研究一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论