江苏省镇江一中等2025届高三第二次模拟考试数学试卷含解析_第1页
江苏省镇江一中等2025届高三第二次模拟考试数学试卷含解析_第2页
江苏省镇江一中等2025届高三第二次模拟考试数学试卷含解析_第3页
江苏省镇江一中等2025届高三第二次模拟考试数学试卷含解析_第4页
江苏省镇江一中等2025届高三第二次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省镇江一中等2025届高三第二次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种2.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;3.设是虚数单位,复数()A. B. C. D.4.函数的一个单调递增区间是()A. B. C. D.5.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.6.已知集合,,若,则的最小值为()A.1 B.2 C.3 D.47.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.1 B. C. D.8.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A. B. C.3 D.59.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.10.抛物线的焦点为,点是上一点,,则()A. B. C. D.11.在中,角所对的边分别为,已知,则()A.或 B. C. D.或12.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.14.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是.15.已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,,则双曲线的离心率的取值范围为_____.16.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.18.(12分)如图,在三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.19.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值20.(12分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为.己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛.决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜.Pi+4(i=4,3,2,…,4)表示甲总分为i时,最终甲获胜的概率.①写出P0,P8的值;②求决赛甲获胜的概率.21.(12分)已知椭圆:()的左、右焦点分别为和,右顶点为,且,短轴长为.(1)求椭圆的方程;(2)若过点作垂直轴的直线,点为直线上纵坐标不为零的任意一点,过作的垂线交椭圆于点和,当时,求此时四边形的面积.22.(10分)已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。(1)求曲线的方程;(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.2、A【解析】

要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.3、D【解析】

利用复数的除法运算,化简复数,即可求解,得到答案.【详解】由题意,复数,故选D.【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.4、D【解析】

利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D【点睛】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.5、C【解析】

显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.6、B【解析】

解出,分别代入选项中的值进行验证.【详解】解:,.当时,,此时不成立.当时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.7、A【解析】

设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.8、C【解析】

由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题.9、B【解析】

根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.10、B【解析】

根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.11、D【解析】

根据正弦定理得到,化简得到答案.【详解】由,得,∴,∴或,∴或.故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.12、B【解析】

运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长.【详解】抛物线E:的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,所以弦长.【点睛】本题考查了抛物线的准线、圆的弦长公式.14、【解析】试题分析:由题意得函数在[2,上单调递增,当时在[2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性15、【解析】

法一:根据直角三角形的性质和勾股定理得,,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,,,,,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,,,设,则,令,所以时,,在上单调递增,,,.法二:,,令,,,,,,,,,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.16、【解析】

先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)利润约为111.2万元.【解析】

(1)首先列出基本事件,然后根据古典概型求出恰好两个月合格的概率;(2)首先求出利润y和养殖量x的平均值,然后根据公式求出线性回归方程中的斜率和截距即可求出线性回归方程;(3)根据线性回归方程代入9月份的数据即可求出9月利润.【详解】(1)2月到6月中,合格的月份为2,3,4月份,则5个月份任意选取3个月份的基本事件有,,,,,,,,,,共计10个,故恰好有两个月考核合格的概率为;(2),,,,故;(3)当千只,(十万元)(万元),故9月份的利润约为111.2万元.【点睛】本题主要考查了古典概型,线性回归方程的求解和使用,属于基础题.18、(1)证明见解析;(2).【解析】

(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值.【详解】(1)证明:因为,为中点,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,,,,,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化.考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论.19、(1)的极坐标方程为.曲线的直角坐标方程为.(2)【解析】

(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,则,其中为锐角,且满足,,当时,取最大值,此时,【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.20、(1)乙的技术更好,见解析(2)①,;②【解析】

(1)列出分布列,求出期望,比较大小即可;(2)①直接根据概率的意义可得P0,P8;②设每轮比赛甲得分为,求出每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差数列,根据可得答案.【详解】(1)记甲乙各生产一件零件给工厂带来的效益分别为元、元,随机变量,的分布列分别为10521052所以,,所以,即乙的技术更好(2)①表示的是甲得分时,甲最终获胜的概率,所以,表示的是甲得4分时,甲最终获胜的概率,所以;②设每轮比赛甲得分为,则每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得时,最终获胜有以下三种情况:(1)下一轮得1分并最终

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论