版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市实验外国语学校2025届高三第二次调研数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.2.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.3.已知,,,则,,的大小关系为()A. B. C. D.4.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A. B. C. D.5.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种 B.20种 C.22种 D.24种6.设集合,,则()A. B.C. D.7.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.8.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.9.执行如图所示的程序框图,若输入,,则输出的值为()A.0 B.1 C. D.10.函数的大致图像为()A. B.C. D.11.若为虚数单位,则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.己知函数,若曲线在处的切线与直线平行,则__________.14.已知集合,若,则__________.15.已知三棱锥中,,,则该三棱锥的外接球的表面积是________.16.已知函数图象上一点处的切线方程为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.18.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.19.(12分)已知等比数列是递增数列,且.(1)求数列的通项公式;(2)若,求数列的前项和.20.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.21.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.22.(10分)已知函数,其中,为自然对数的底数.(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
在中,设,,,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,,,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,,,,即,即,,,,,,,,即,又,,,则,所以,,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、、,为线段上的一点,则存在实数使得,,设,,则,,,,,消去得,,所以,,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.2、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.3、D【解析】
构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.4、B【解析】
由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.5、B【解析】
分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B【点睛】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.6、A【解析】
解出集合,利用交集的定义可求得集合.【详解】因为,又,所以.故选:A.【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.7、D【解析】
先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.8、C【解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.9、A【解析】
根据输入的值大小关系,代入程序框图即可求解.【详解】输入,,因为,所以由程序框图知,输出的值为.故选:A【点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.10、D【解析】
通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.11、B【解析】
由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解【详解】由题意得,因为,,所以在复平面内对应的点位于第二象限.故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.12、D【解析】
如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求导,再根据导数的几何意义,有求解.【详解】因为函数,所以,所以,解得.故答案为:【点睛】本题考查导数的几何意义,还考查运算求解能力以及数形结合思想,属于基础题.14、1【解析】
分别代入集合中的元素,求出值,再结合集合中元素的互异性进行取舍可解.【详解】依题意,分别令,,,由集合的互异性,解得,则.故答案为:【点睛】本题考查集合元素的特性:确定性、互异性、无序性.确定集合中元素,要注意检验集合中的元素是否满足互异性.15、【解析】
将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.16、1【解析】
求出导函数,由切线方程得切线斜率和切点坐标,从而可求得.【详解】由题意,∵函数图象在点处的切线方程为,∴,解得,∴.故答案为:1.【点睛】本题考查导数的几何意义,求出导函数是解题基础,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18、(1)(2)证明见解析【解析】
(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点.再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,∴至少有一个零点.∵,①若,则,在上单调递增,∴有唯一零点.②若令,得有两个极值点,∵,∴,∴.∴在上单调递增,在上单调递减,在上单调递增.∴极大值为.,又,∴在(0,16)上单调递增,∴,∴有唯一零点.综上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的运用、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意零点存在定理的运用.19、(1)(2)【解析】
(1)先利用等比数列的性质,可分别求出的值,从而可求出数列的通项公式;(2)利用错位相减求和法可求出数列的前项和.【详解】解:(1)由是递增等比数列,,联立,解得或,因为数列是递增数列,所以只有符合题意,则,结合可得,∴数列的通项公式:;(2)由,∴;∴;那么,①则,②将②﹣①得:.【点睛】本题考查了等比数列的性质,考查了等比数列的通项公式,考查了利用错位相减法求数列的前项和.20、(1)(2)【解析】
(1)由正弦定理将,转化,即,由余弦定理求得,再由平方关系得再求解.(2)由,得,结合再求解.【详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【点睛】本题考查正弦定理、余弦定理、三角形的面积公式,考查运算求解能力以及化归与转化思想,属于中档题.21、(1)x2=4y.(2).【解析】试题解析:(Ⅰ)设点P(x0,),由x2=2py(p>0)得,y=,求导y′=,因为直线PQ的斜率为1,所以=1且x0--√2=0,解得p=2,所以抛物线C1的方程为x2=4y.(Ⅱ)因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,当且仅当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年法律规定公证离婚协议样式版B版
- 2024年租赁合同标的及权利义务
- 2024年版:专业消毒服务合同模板3篇
- 2024年采购合作详细协议样式版B版
- 2024年高铁车站建设劳务分包协议
- 导游基础知识-中国四大宗教考试试题-(三)
- 2024租赁房屋场地合同
- 工业机器人技术基础及应用配套课件
- 2024版全新研究:节能减排项目贷款合同
- 信息科灾害脆弱性分析报告
- Unit4 What can you do Part B read and write (说课稿)-2024-2025学年人教PEP版英语五年级上册
- 2025年MEMS传感器行业深度分析报告
- 2024年度员工试用期劳动合同模板(含保密条款)3篇
- DB23-T 3840-2024非煤矿山隐蔽致灾因素普查治理工作指南
- 机关事业单位财务管理制度(六篇)
- 仓库仓储安全管理培训课件模板
- 风力发电场运行维护手册
- 人教版六年级上册数学第八单元数学广角数与形单元试题含答案
- 叉车租赁合同模板
- 河道旅游开发合同
- 住房公积金稽核审计工作方案例文(4篇)
评论
0/150
提交评论