黑龙江省绥化七中2025届高考临考冲刺数学试卷含解析_第1页
黑龙江省绥化七中2025届高考临考冲刺数学试卷含解析_第2页
黑龙江省绥化七中2025届高考临考冲刺数学试卷含解析_第3页
黑龙江省绥化七中2025届高考临考冲刺数学试卷含解析_第4页
黑龙江省绥化七中2025届高考临考冲刺数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省绥化七中2025届高考临考冲刺数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为()A. B. C. D.2.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于()A. B. C. D.3.已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是()A.∥ B.∥C.∥∥ D.4.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.5.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A. B. C. D.6.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲 B.乙 C.丙 D.丁7.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.8.若变量,满足,则的最大值为()A.3 B.2 C. D.109.的展开式中的项的系数为()A.120 B.80 C.60 D.4010.已知,则的大小关系为A. B. C. D.11.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.12.设等比数列的前项和为,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知多项式的各项系数之和为32,则展开式中含项的系数为______.14.设,则除以的余数是______.15.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.16.若函数在和上均单调递增,则实数的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.18.(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,,.(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值.19.(12分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.(1)求及;(2)设,设数列的前项和,证明:.20.(12分)已知椭圆()经过点,离心率为,、、为椭圆上不同的三点,且满足,为坐标原点.(1)若直线、的斜率都存在,求证:为定值;(2)求的取值范围.21.(12分)已知直线的参数方程:(为参数)和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)已知点,直线与圆相交于、两点,求的值.22.(10分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由题可知,,再结合双曲线第一定义,可得,对有,即,解得,再对,由勾股定理可得,化简即可求解【详解】如图,因为,所以.因为所以.在中,,即,得,则.在中,由得.故选:B【点睛】本题考查双曲线的离心率求法,几何性质的应用,属于中档题2、A【解析】

由已知,设.可得.于是可得,进而得出结论.【详解】解:依题意,设.则.,.设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.则,.故选:A.【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.3、D【解析】

根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A,当,,时,则平面与平面可能相交,,,故不能作为的充分条件,故A错误;对于B,当,,时,则,故不能作为的充分条件,故B错误;对于C,当,,时,则平面与平面相交,,,故不能作为的充分条件,故C错误;对于D,当,,,则一定能得到,故D正确.故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题.4、B【解析】

由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.5、C【解析】

把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值.【详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方体中平面,从而有,∴,∴在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,,当且仅当共线时取等号,∴所求最小值为.故选:C.【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值.6、C【解析】

分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.7、B【解析】

根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.8、D【解析】

画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.9、A【解析】

化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.10、D【解析】

分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.11、A【解析】

作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.12、C【解析】

根据等比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

令可得各项系数和为,得出,根据第一个因式展开式的常数项与第二个因式的展开式含一次项的积与第一个因式展开式含x的一次项与第二个因式常数项的积的和即为展开式中含项,可得解.【详解】令,则得,解得,所以展开式中含项为:,故答案为:【点睛】本题主要考查了二项展开式的系数和,二项展开式特定项,赋值法,属于中档题.14、1【解析】

利用二项式定理得到,将89写成1+88,然后再利用二项式定理展开即可.【详解】,因展开式中后面10项均有88这个因式,所以除以的余数为1.故答案为:1【点睛】本题考查二项式定理的综合应用,涉及余数的问题,解决此类问题的关键是灵活构造二项式,并将它展开分析,本题是一道基础题.15、【解析】

过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.【点睛】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.16、【解析】

化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可.【详解】由知,当时,在和上单调递增,在和上均单调递增,,

的取值范围为:.

故答案为:.【点睛】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】

(1)分类时,恒成立,时,分离参数为,引入新函数,利用导数求得函数最值即可;(2),导出导函数,问题转化为在上有解.再用导数研究的性质可得.【详解】解:(1)因为当时,恒成立,所以,若,为任意实数,恒成立.若,恒成立,即当时,,设,,当时,,则在上单调递增,当时,,则在上单调递减,所以当时,取得最大值.,所以,要使时,恒成立,的取值范围为.(2)由题意,曲线为:.令,所以,设,则,当时,,故在上为增函数,因此在区间上的最小值,所以,当时,,,所以,曲线在点处的切线与轴垂直等价于方程在上有实数解.而,即方程无实数解.故不存在实数,使曲线在点处的切线与轴垂直.【点睛】本题考查不等式恒成立,考查用导数的几何意义,由导数几何把问题进行转化是解题关键.本题属于困难题.18、(1)见解析(2),最大值.【解析】

(1)先证明,,故平面ADC.由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【详解】(1)证明:∵四边形DCBE为平行四边形,∴,.∵平面ABC,平面ABC,∴.∵AB是圆O的直径,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,当且仅当,即时取等号,∴当时,体积有最大值.【点睛】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.19、(1),;(2)证明见解析.【解析】

(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【点睛】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.20、(1)证明见解析;(2).【解析】

(1)首先根据题中条件求出椭圆方程,设、、点坐标,根据利用坐标表示出即可得证;(2)设直线方程,再与椭圆方程联立利用韦达定理表示出,即可求出范围.【详解】(1)依题有,所以椭圆方程为.设,,,由为的重心,;又因为,,,,(2)当的斜率不存在时:,,,代入椭圆得,,,当的斜率存在时:设直线为,这里,由,,根据韦达定理有,,,故,代入椭圆方程有,又因为,综上,的范围是.【点睛】本题主要考查了椭圆方程的求解,三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论