版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题十九事件的相互独立性、频率与概率核心素养练习一、核心素养聚焦考点一数学抽象-频率与概率的区别例题9.某人将一枚硬币连掷10次,正面朝上的情况出现了8次,若用A表示“正面朝上”这一事件,则A的()A.概率为eq\f(4,5) B.频率为eq\f(4,5)C.频率为8 D.概率接近于8【答案】B【解析】做n次随机试验,事件A发生了m次,则事件A发生的频率为eq\f(m,n).如果多次进行试验,事件A发生的频率总在某个常数附近摆动,那么这个常数才是事件A的概率.故eq\f(8,10)=eq\f(4,5)为事件A的频率.考点二数学运算-相互独立事件概率的计算例题10、红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A,乙对B,丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,求红队至少两名队员获胜的概率.【解析】记甲胜A、乙胜B、丙胜C分别为事件D,E,F,则甲不胜A、乙不胜B、丙不胜C分别为事件eq\o(D,\s\up12(-)),eq\o(E,\s\up12(-)),eq\o(F,\s\up12(-)).根据各盘比赛结果相互独立,可得红队至少两名队员获胜的概率为P=P(D∩E∩eq\o(F,\s\up12(-)))+P(D∩eq\o(E,\s\up12(-))∩F)+P(eq\o(D,\s\up12(-))∩E∩F)+P(D∩E∩F)=P(D)P(E)P(eq\o(F,\s\up12(-)))+P(D)P(eq\o(E,\s\up12(-)))P(F)+P(eq\o(D,\s\up12(-)))P(E)P(F)+P(D)P(E)P(F)=0.6×0.5×(1-0.5)+0.6×(1-0.5)×0.5+(1-0.6)×0.5×0.5+0.6×0.5×0.5=0.55.考点四建模素养-随机模拟试验的应用例题11.种植某种树苗,成活率为0.9,请采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验的过程,并求出所求概率.【解析】先由计算机随机函数RANDBETWEEN(0,9),或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果,经随机模拟产生随机数,例如,如下30组随机数:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为eq\f(9,30)=0.3.二、学业质量测评一、选择题1.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.15【答案】B【解析】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B2.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定【答案】C【解析】不可能事件的概率为0,必然事件的概率为1,故A错;频率是由试验的次数决定的;故B错;概率是频率的稳定值,故C正确,D错.故选:C.3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()A. B. C. D.【答案】A【解析】甲赢的方式分为两种:第一场赢,或者第一场输且第二场赢.甲第一场赢的概率为,甲第一场输第二场赢的概率为.故甲赢得冠军的概率为.故选A.4.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人的能荣获一等奖的概率分别为和,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为()A. B. C. D.【答案】D【解析】设甲、乙获一等奖的概率分别是,不获一等奖的概率是,则这两人中恰有一人获奖的事件的概率为:,应选答案D。5.在某次考试中,甲、乙通过的概率分别为0.7,0.4,若两人考试相互独立,则甲未通过而乙通过的概率为A.0.28 B.0.12 C.0.42 D.0.16【答案】B【解析】甲未通过的概率为0.3,则甲未通过而乙通过的概率为.选B.二、多选题6.下列各对事件中,不是相互独立事件的有()A.运动员甲射击一次,“射中9环”与“射中8环”B.甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C.甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”D.甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”【答案】ACD【解析】在A中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C中,甲,乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标“不可能同时发生,二者是互斥事件,不独立;在D中,设“至少有1人射中目标”为事件A,“甲射中目标但乙未射中目标”为事件B,则,因此当时,,故A、B不独立,故选:ACD7.如图所示的电路中,5只箱子表示保险匣,设5个盒子分别被断开为事件A,B,C,D,E.箱中所示数值表示通电时保险丝被切断的概率,下列结论正确的是()A.A,B两个盒子串联后畅通的概率为 B.D,E两个盒子并联后畅通的概率为C.A,B,C三个盒子混联后畅通的概率为 D.当开关合上时,整个电路畅通的概率为【答案】ACD【解析】由题意知,,,,,,所以A,B两个盒子畅通的概率为,因此A正确;D,E两个盒子并联后畅通的概率为,因此B错误;A,B,C三个盘子混联后畅通的概率为,C正确;根据上述分析可知,当开关合上时,电路畅通的概率为,D正确.故选:ACD三、填空题8.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.【答案】0.98.【解析】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为.9.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.【答案】0.18【解析】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是10.,,表示3种开关并联,若在某段时间内它们正常工作的概率分别0.9,0.8,0.7,那么此系统的可靠性为______________.【答案】0.994【解析】某段时间内三个开关全部坏掉的概率为,所以系统正常工作的概率为,所以此系统的可靠性为0.994.故答案为:0.994.11.A、B两人进行一局围棋比赛,A获得的概率为0.8,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计B获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5,6,7表示A获胜;8,9表示B获胜,这样能体现A获胜的概率为0.8.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034743738636964736614698637162332616804560111410959774246762428114572042533237322707360751,据此估计B获胜的概率为__________.【答案】【解析】由30组别的随机数,采用三局两胜制得到B获胜满足的基本事件有:698,959,共2个,∴B获胜的概率为p.故答案为.12.在一次数学考试中,第22题和第23题为选做题规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为.则其中甲、乙2名学生选做同一道题的概率为_____;甲、乙2名学生都选做第22题的概率为_______.【答案】【解析】解:设事件A表示“甲选做第22题”,事件B表示“乙选做第22题”,则甲,乙2各学生选做同一道题的事件为“”,且事件A,B相互独立,.∴甲、乙两名学生选做同一道题的概率为;,∴甲、乙两名学生都选做第22题的概率为.故答案为:;.四、解答题13.计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.【答案】(1)丙;(2)【解析】(1)设“甲获得合格证书”为事件A,“乙获得合格证书”为事件B,“丙获得合格证书”为事件C,则,,.因为,所以丙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024快递行业广告投放合作协议
- 2024年股权承接协议:股权转让合同范本
- 铁路安全知识培训课件
- 2025年度高端宠物狗品种繁育与买卖合作协议3篇
- 反电诈业务知识培训课件
- 英文卫浴知识培训课件
- 《口头语言的特点》课件
- 2025年度船舶货物保险责任免除与赔偿范围合同3篇
- 郑州黄河护理职业学院《园林植物病理学》2023-2024学年第一学期期末试卷
- 浙江国际海运职业技术学院《媒介伦理与影视法规》2023-2024学年第一学期期末试卷
- 重庆市丰都县2023-2024学年七年级上学期期末数学试题
- 四年级数学思维训练题100道
- 《EPDM密封条及技术》课件
- 私募基金业务奖金激励制度
- DB43-T 2897-2023 竹纤维复合波纹管材技术规范
- 人情往来(礼金)账目表
- 2023年安全总监年终工作总结
- GB/T 43543-2023漱口水
- 法拍辅助工作管理制度
- 中控室保密与信息安全政策
- 后端开发年终总结
评论
0/150
提交评论