13.5轴对称(单元检测)(解析版)_第1页
13.5轴对称(单元检测)(解析版)_第2页
13.5轴对称(单元检测)(解析版)_第3页
13.5轴对称(单元检测)(解析版)_第4页
13.5轴对称(单元检测)(解析版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13.5轴对称(单元检测)一、单选题(共36分)1.(本题3分)如图所示的正方形网格中,网格线的交点为格点,已知、是两个定格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A.6个 B.7个 C.8个 D.9个【答案】C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.具体如图所示:故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.2.(本题3分)如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个【答案】C【分析】根据“”可证明,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于与不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到,则利用平行线的判定方法可对③进行判断.【详解】是的中线,,,,,所以④正确;,所以①正确;与不能确定相等,和面积不一定相等,所以②错误;,,,所以③正确;故选:.【点评】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.3.(本题3分)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1号袋 B.2号袋 C.3号袋 D.4号袋【答案】B【分析】根据轴对称的性质画出图形即可得出正确选项.【详解】根据轴对称的性质可知,台球走过的路径为:∴最后落入2号球袋,故选B.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴;画出图形是正确解答本题的关键.4.(本题3分)下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个 B.2个 C.3个 D.4个【答案】D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.5.(本题3分)如图,△中,,是中点,下列结论,不一定正确的是()A. B.平分 C. D.【答案】C【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】∵AB=AC,

∴∠B=∠C,

∵AB=AC,D是BC中点,

∴AD平分∠BAC,AD⊥BC,

所以,结论不一定正确的是AB=2BD.

故选:C.【点评】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.6.(本题3分)等腰三角形中,,一边上的中线将这个三角形的周长分为和两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或10【答案】B【分析】根据已知条件中的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,则需分两种情况讨论.【详解】根据题意,如图所示:①当AC+AC=15,解得AC=10,

所以底边长=12-×10=7;

②当AC+AC=12,解得AC=8,

所以底边长=15-×8=11.

所以底边长等于7或11.

故选:B.【点评】考查了等腰三角形的性质和三角形的三边关系,解题关键抓住在已知条件没有明确给出哪一部分长要一定要想到两种情况,需采用分类进行讨论,还应验证各种情况是否能构成三角形.7.(本题3分)如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2,连接P1,P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为()A.4 B.5 C.6 D.7【答案】C【解析】试题分析:根据对称图形的性质可得:PM=M,PN=N,则△PMN的周长=PM+MN+PN=M+MN+N==6.考点:对称的性质8.(本题3分)如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形【答案】B【分析】可依据题意线作出图形,结合图形利用平行线的性质和角平分线的定义可得∠B=∠A,利用“等角对等边”可得其为等腰三角形.【详解】如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE,∴∠B=∠A,∴△ABC为等腰三角形.故选B.【点评】本题考查了平行线的性质和等腰三角形的判定,进行角的等量代换是正确解答本题的关键.9.(本题3分)将点A(2,3)向左平移2个单位长度得到点A’,点A’关于x轴的对称点是A’’,则点A’’的坐标为()A.(0,-3) B.(4,-3)C.(4,3) D.(0,3)【答案】A【详解】试题解析:∵点A(2,3)向左平移2个单位长度得到点A′,∴点A′的横坐标为2-2=0,纵坐标不变,即点A′的坐标为(0,3).点A′关于x轴的对称点是A″,则点A″的坐标为(0,-3).故选A.10.(本题3分)已知,在△ABC中,,如图,(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.根据以上作图过程及所作图形,下列结论中错误的是()A. B.△BCD是等边三角形C.AD垂直平分BC D.【答案】D【分析】根据作图过程及所作图形可知,得出△BCD是等边三角形;又因为,,推出,继而得出;根据,,可知AD为的角平分线,根据三线合一得出AD垂直平分BC;四边形ABCD的面积等于的面积与的面积之和,为.【详解】∵∴△BCD是等边三角形故选项B正确;∵,∴∴故选项A正确;∵,∴据三线合一得出AD垂直平分BC故选项C正确;∵四边形ABCD的面积等于的面积与的面积之和∴故选项D错误.故选:D.【点评】本题考查的知识点是等边三角形的判定、全等三角形的判定及性质、线段垂直平分线的判定以及四边形的面积,考查的范围较广,但难度不大.11.(本题3分)如图,在中,,平分,过点A作于点D,过点D作,分别交、于点E、F,若,则的长为()A.10 B.8 C.7 D.6【答案】D【分析】延长、交于点G,根据三线合一性质推出是等腰三角形,从而可得D是的中点,E是的中点,再利用中位线定理即可得.【详解】如图,延长、交于点G∵平分,于点D∴,D是的中点∵E是的中点,F是的中点,是的中位线,是的中位线∴又∵∴∴∴∴故选:D.【点评】本题考查了等腰三角形的判定定理与性质、中位线定理,通过作辅助线,构造等腰三角形是解题关键.错因分析:容易题.失分原因是对特殊三角形的性质及三角形的重要线段掌握不到位.12.(本题3分)如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1 B.2 C.3 D.4【答案】C【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB故③正确.故选C.【点评】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.二、填空题(共12分)13.(本题3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到,连接,则的周长为________.【答案】12【分析】根据平移的性质得,,,则可计算,则,可判断为等边三角形,继而可求得的周长.【详解】平移两个单位得到的,,,,,,,,又,,是等边三角形,的周长为.故答案为:12.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.(本题3分)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.【答案】40°.【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.15.(本题3分)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为_______.【答案】18【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.【点评】本题考查等腰三角形的判定与性质,角平分线的性质,平行线的判定,三角形周长的求法,等量代换等知识点.16.(本题3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.【答案】【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为.【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.三、解答题(共72分)17.(本题8分)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.【答案】(1)其他两边分别为4和7;(2)y=2时,x=8,y=4时,x=7,y=8时,x=5.【分析】(1)根据等腰三角形的性质即可求出答案.(2)设等腰三角形的三边长为x、x、y,根据题意可知y<9,y是2的倍数,从而可求出答案.【详解】(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x==9﹣,x与y都是整数,∴y是2的倍数,∴y=2时,x=8,y=4时,x=7,y=8,x=5.【点评】本题考查等腰三角形,解题的关键是熟练运用等腰三角形的性质,本题属于基础题型.18.(本题8分)如图,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕.(1)判断与DC的位置关系,并说明理由;(2)如果,求的度数.【答案】(1)B′E∥DC,理由见解析;(2)65°【分析】(1)由于是的折叠后形成的,可得,可得B′E∥DC;(2)利用平行线的性质和全等三角形求解.【详解】(1)由于是的折叠后形成的,,;(2)折叠,△,,即,,,.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点落在边上的点,则△,利用全等三角形的性质和平行线的性质及判定求解.19.(本题8分)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.【答案】见解析【分析】如图,过点作于P,根据等腰三角形的三线合一得出BP=PC,DP=PE,进而根据等式的性质,由等量减去等量差相等得出BD=CE.【详解】如图,过点作于P.∵,∴;∵,∴,∴,∴BD=CE.【点评】本题考查了等腰三角形的性质,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.20.(本题8分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示的方式折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【答案】(1)E//DC;(2)∠AEB=65°【分析】(1)先由折叠性质可知,再由∠D=90°可得,进而求解即可;

(2)先运用平行线的性质可得,再由折叠的性质可得,进而求解即可.【详解】(1)E∥DC

由折叠可知∠AE=∠B=90°

∵∠D=90°∴∠AE=∠D∴E∥DC(2)∵B′E∥DC∴∠EB=∠C=130°由折叠可知∠AEB=∠AE,

∴∠AEB=∠EB=×130°=65°故答案为:65°【点评】本题主要是折叠的性质以及平行线的判定和性质,根据折叠的性质,找到折叠后相等的角和边;同位角相等,两直线平行,两直线平行,同位角相等.21.(本题8分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.【答案】(1)4,1;(2)5【分析】(1)利用轴对称的性质求出MQ即可解决问题;

(2)利用轴对称的性质求出NR即可解决问题.【详解】(1)∵P,Q关于OA对称,∴OA垂直平分线段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R关于OB对称,∴OB垂直平分线段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.【点评】本题考查轴对称的性质,解题的关键是理解题意,熟练掌握轴对称的性质属于中考常考题型.22.(本题10分)如图,点是等边内一点,,.将绕点逆时针旋转得,连接.求证:是等边三角形;当,,时,求的长;探究:当为多少度时,是等腰三角形.【答案】证明见解析;;、或.【分析】由旋转的性质可以知道,,可判断是等边三角形;由可知,当时,,可判断为直角三角形;根据是等腰三角形,推出两腰相等,分三种情况进行讨论,利用旋转和全等的性质即可得出答案.【详解】∵将绕点按顺时针方向旋转得,∴,,∴.∴是等边三角形;∵,∴,∵是等边三角形,∴,又,∴,∴为直角三角形.又,,∴,∴;若是等腰三角形,所以分三种情况:①②③,∵,,∴,而,由①可得,求得;由②可得求得;由③可得,求得;综上可知、或.【点评】本题主要考查旋转的性质,全等三角形的判定与性质,等腰(边)三角形的判定与性质,掌握图形的关系是解题的关键.23.(本题10分)如图,在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.【答案】70°、40°.【详解】试题分析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.试题解析:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°﹣∠CDE=35°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°,又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180﹣(∠B+∠ACB)=40°.【点睛】本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.24.(本题12分)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=;如图2,若∠ACD=90°,则∠AFB=;如图3,若∠ACD=120°,则∠AFB=;(2)如图4,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.【答案】(1)120°,90°,60°;(2)180°﹣α;(3)∠AFB=180°﹣α,证明详见解析.【分析】(1)如图1,证明△ACE≌△DCB,根据全等三角形的性质可得∠EAC=∠BDC,再根据∠AFB是△ADF的外角求出其度数即可;如图2,证明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,进而得出∠AFB=90°;如图3,证明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°-∠DCB得到∠FAB+∠FBA=120°,进而求出∠AFB=60°;(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的内角和定理得∠CAE=∠CDB,从而得出∠DFA=∠ACD,得到结论∠AFB=180°-α;(3)由∠ACD=∠BCE得到∠ACE=∠DCB,通过证明△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论