四川省绵阳市江油中学2025届高考考前提分数学仿真卷含解析_第1页
四川省绵阳市江油中学2025届高考考前提分数学仿真卷含解析_第2页
四川省绵阳市江油中学2025届高考考前提分数学仿真卷含解析_第3页
四川省绵阳市江油中学2025届高考考前提分数学仿真卷含解析_第4页
四川省绵阳市江油中学2025届高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绵阳市江油中学2025届高考考前提分数学仿真卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则下列不等式不能成立的是()A. B. C. D.2.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.03.双曲线﹣y2=1的渐近线方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=04.若,则的值为()A. B. C. D.5.计算等于()A. B. C. D.6.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.7.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.8.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.39.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.12种 B.24种 C.36种 D.48种10.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()A. B. C. D.11.已知,则()A. B. C. D.12.已知曲线且过定点,若且,则的最小值为().A. B.9 C.5 D.二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集为________14.在中,为定长,,若的面积的最大值为,则边的长为____________.15.在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是______吨.16.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.18.(12分)已知中,,,是上一点.(1)若,求的长;(2)若,,求的值.19.(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.20.(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.(1)证明:平面(2)若,求二面角的余弦值.21.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.22.(10分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.2、B【解析】

先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.3、A【解析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.4、C【解析】

根据,再根据二项式的通项公式进行求解即可.【详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力5、A【解析】

利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.6、A【解析】

由,两边平方后展开整理,即可求得,则的长可求.【详解】解:,,,,,,.,,故选:.【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.7、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.8、B【解析】

用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.9、C【解析】

先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.10、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.11、D【解析】

根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.12、A【解析】

根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

通过平方,将无理不等式化为有理不等式求解即可。【详解】由得,解得,所以解集是。【点睛】本题主要考查无理不等式的解法。14、【解析】

设,以为原点,为轴建系,则,,设,,,利用求向量模的公式,可得,根据三角形面积公式进一步求出的值即为所求.【详解】解:设,以为原点,为轴建系,则,,设,,则,即,由,可得.则.故答案为:.【点睛】本题考查向量模的计算,建系是关键,属于难题.15、10【解析】

根据已知数据直接计算即得.【详解】由题得,.故答案为:10【点睛】本题考查求平均数,是基础题.16、【解析】

先求导数可得切线斜率,利用基本不等式可得切点横坐标,从而可得切线方程.【详解】,,=1时有最小值1,此时M(1,﹣2),故切线方程为:,即.故答案为:.【点睛】本题主要考查导数的几何意义,切点处的导数值等于切线的斜率是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)四边形OMDN的面积是定值,其定值为.【解析】

(1)根据三角形内切圆的性质证得,由此判断出点的轨迹为椭圆,并由此求得曲线的方程.(2)将直线的斜率分成不存在或存在两种情况,求出平行四边形的面积,两种情况下四边形的面积都为,由此证得四边形的面积为定值.【详解】(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以点C的轨迹为以点A和点B为焦点的椭圆(点不在轴上),所以c,a=2,b,所以曲线G的方程为,(2)因为,故四边形为平行四边形.当直线l的斜率不存在时,则四边形为为菱形,故直线MN的方程为x=﹣1或x=1,此时可求得四边形OMDN的面积为.当直线l的斜率存在时,设直线l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|点O到直线MN的距离d,由,得xD,yD,∵点D在曲线C上,所以将D点坐标代入椭圆方程得1+2k2=2m2,由题意四边形OMDN为平行四边形,∴OMDN的面积为S,由1+2k2=2m2得S,故四边形OMDN的面积是定值,其定值为.【点睛】本小题主要考查用定义法求轨迹方程,考查椭圆中四边形面积的计算,考查椭圆中的定值问题,考查运算求解能力,属于中档题.18、(1)(2)【解析】

(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.(2)运用正弦定理分别表示出和,结合已知条件计算出结果.【详解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【点睛】本题考查了正弦定理、三角形面积公式以及余弦定理,结合三角形熟练运用各公式是解题关键,此类题目是常考题型,能够运用公式进行边角互化,需要掌握解题方法.19、(1)当时,无极值;当时,极小值为;(2).【解析】

(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题,当时,,函数在上单调递增,此时函数无极值;当时,令,得,令,得所以函数在上单调递增,在上单调递减.此时函数有极小值,且极小值为.综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且,令所以,因为,,从而,所以,在上单调递增.又若,则所以在上单调递增,从而,所以时满足题意.若,所以,,在中,令,由(1)的单调性可知,有最小值,从而.所以所以,由零点存在性定理:,使且在上单调递减,在上单调递增.所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.20、(1)详见解析;(2).【解析】

(1)连接,由菱形的性质以及中位线,得,由平面平面,且交线,得平面,故而,最后由线面垂直的判定得结论.(2)以为原点建平面直角坐标系,求出平面平与平面的法向量,,最后求得二面角的余弦值为.【详解】解:(1)连结∵,且是的中点,∴∵平面平面,平面平面,∴平面.∵平面,∴又为菱形,且为棱的中点,∴∴.又∵,平面∴平面.(2)由题意有,∵四边形为菱形,且∴分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则设平面的法向量为由,得,令,得取平面的法向量为∴二面角为锐二面角,∴二面角的余弦值为【点睛】处理线面垂直问题时,需要学生对线面垂直的判定定理特别熟悉,运用几何语言表示出来方才过关,一定要在已知平面中找两条相交直线与平面外的直线垂直,才可以证得线面垂直,其次考查了学生运用空间向量处理空间中的二面角问题,培养了学生的计算能力和空间想象力.21、(1);(2).【解析】

(1)分类讨论去绝对值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范围,判断,为正,去掉绝对值,转化为在时恒成立,得到,,在恒成立,从而得到的取值范围.【详解】(1)当时,,由,得,即,或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论